Log in

Possible homeostatic, glucose uptake mechanisms and hepato-pancreatic histological effects of intermittent fasting, exercise, starvation, and honey in streptozotocin-induced diabetes in rats

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Objectives

This study investigated the possible changes in glucose homeostasis, homeostatic model assessment, glucose transporter-4, and hepato-pancreatic histology in streptozotocin (STZ)-induced diabetic rats following intermittent fasting, exercise, starvation, and honey treatment.

Methods

In the non-diabetic phase, rats were administered an oral regimen of distilled water (10 mL/kg), IF, starvation, and honey (1 g/kg) for 4 weeks while in the diabetic phase, after STZ injections, interventions with IF, exercise, starvation, and honey treatment were administered for 4 weeks. This was followed by biochemical studies.

Results

In addition to increasing insulin resistance as shown by a high HOMA-IR score, STZ-induced diabetes decreased glucose transporter-4 (GLUT-4), increased HOMA-IR, HOMA-insulin sensitivity, and HOMA-beta cell function in the pancreas. Notably, IF and exercise greatly ameliorated these changes in diabetic rats unlike starvation and honey regimen. Streptozotocin and starvation substantially and partially destroyed hepato-pancreatic cells, according to histopathological studies, although these were moderately ameliorated by IF and exercise therapies, and less by honey treatment.

Conclusion

Our findings suggest that the IF and exercise and honey treatment to a smaller extent attenuate type 2 diabetes via enhancement of insulin sensitivity, reduction of sugar level, modulate GLUT-4, and hepatic-pancreatic-cell protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate 1
Plate 2
Plate 3
Plate 4

Similar content being viewed by others

Data availability

The corresponding author can provide all of the data used in this article upon request.

Code availability

Not applicable.

Abbreviations

STZ:

Streptozotocin

IF:

Intermittent fasting

IS:

Insulin sensitivity

IR:

Insulin resistance

HOMA:

Homeostatic model assessment

HOMA-IR:

Homeostatic model assessment of insulin resistance

HOMA-IS:

Homeostatic model assessment of insulin sensitivity

HOMA-B:

Homeostatic model assessment of beta cell

References

  1. Srinivasan K, Ramarao P. Animal model in type 2 diabetes research: an overview. Indian J Med Res. 2007;125(3):451.

    CAS  PubMed  Google Scholar 

  2. Chinnaboina GK, Sudhakar A, Verma R, Sharma P, Shrivastava B. A review on diabetes mellitus: current update on management and treatment. Asian Pac J Health Sci. 2018;53(3):67–82.

    Google Scholar 

  3. Bak E, Marcisz C, Krzeminska S, Dobrzyn-Matusiak D, Foltyn A, Drosdzol-Cop A. Does type 1 diabetes modify sexuality and mood of women and men? Int J Environ Res Public Health. 2018;15(5):958. https://doi.org/10.3390/ijerph15050958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Talukder A, Hossain MZ. Prevalence of diabetes mellitus and its associated factors in Bangladesh: application of two-level logistic regression model. Sci Rep. 2020;10(1):10237. https://doi.org/10.1038/s41598-020-66084-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gbadamosi MA, Tlou B. Prevalence of abnormal glucose metabolism among adults attending an outpatient department at a tertiary referral hospital in Swaziland: a cross-sectional study. BMC Public Health. 2020;20(1):392. https://doi.org/10.1186/s12889-020-08489-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rachdaoui N. Insulin: the friend and the foe in the development of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(5):1770. https://doi.org/10.3390/ijms21051770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wysham C, Shubrook J. Beta-cell failure in type 2 diabetes: mechanisms, markers, and clinical implications. Postgrad Med. 2020;132(8):676–86. https://doi.org/10.1080/00325481.2020.1771047.

    Article  CAS  PubMed  Google Scholar 

  8. Adeniyi O, Washington L, Glenn CJ, Franklin SG, Scott A, Aung M, Niranjan SJ, Jolly PE. The use of complementary and alternative medicine among hypertensive and type 2 diabetic patients in Western Jamaica: a mixed methods study. PLOS ONE. 2021;16(2):e0245163. https://doi.org/10.1371/journal.pone.0245163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Albosta M, Bakke J. Intermittent fasting: is there a role in the treatment of diabetes? A review of the literature and guide for primary care physicians. Clin Diabetes Endocrinol. 2021;7(1):3. https://doi.org/10.1186/s40842-020-00116-1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grajower MM, Horne BD. Clinical management of intermittent fasting in patients with diabetes mellitus. Nutrients. 2019;11(4):873. https://doi.org/10.3390/nu11040873\.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taylor R. Calorie restriction for long-term remission of type 2 diabetes. Clin Med (Lond). 2019;19(1):37–42. https://doi.org/10.7861/clinmedicine.19-1-37.

    Article  PubMed  Google Scholar 

  12. Henson J, Yates T, Edwardson CL, Khunti K, Talbot D, Gray LJ, Davies MJ. Sedentary time and markers of chronic low-grade inflammation in a high risk population. PLoS ONE. 2013;8(10):78350–007835.

    Article  Google Scholar 

  13. Harvie M, Howell A. Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects—a narrative review of human and animal evidence. Behav Sci. 2017;7(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous III AG., ... and Mattson MP. Flip** the metabolic switch: understanding and applying the health benefits of fasting. Obesity. 2018,26(2), 254–268.

  15. Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ. 2014;38(4):308–14. https://doi.org/10.1152/advan.00080.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol. 2011;10(1):1–15.

    Article  Google Scholar 

  17. Zheng J, Cheng J, Zheng S, Zhang L, Guo X, Zhang J, **ao X. Physical exercise and its protective effects on diabetic cardiomyopathy: what is the evidence? Front Endocrinol. 2018;9:729.

    Article  Google Scholar 

  18. Agbonifo-Chijiokwu E, Nwangwa KE, Oyovwi MO, et al. Underlying biochemical effects of intermittent fasting, exercise and honey on streptozotocin-induced liver damage in rats. J Diabetes Metab Disord. 2023. https://doi.org/10.1007/s40200-022-01173-2.

    Article  PubMed  Google Scholar 

  19. Lemieux I. Reversing type 2 diabetes: the time for lifestyle medicine has come! Nutrients. 2020;12(7):1974. https://doi.org/10.3390/nu12071974.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Akanmu MA, Olowookere TA, Atunwa SA, Ibrahim BO, Lamidi OF, Adams PA, Ajimuda BO, Adeyemo LE. Neuropharmacological effects of Nigerian honey in mice. Afr J Tradit Complement Altern Med. 2011;8(3):230–49

  21. Al Aamri ZM, Ali BH. Does honey have any salutary effect against streptozotocin - induced diabetes in rats? J Diab Metab Disord. 2017;16:1–6. https://doi.org/10.1186/s40200-016-0278-y.

    Article  CAS  Google Scholar 

  22. Almasaudi SB, El-Shitany NA, Abbas AT, Abdel-dayem UA, Ali SS, Al Jaouni SK, Harakeh S. Antioxidant, anti-inflammatory, and antiulcer potential of manuka honey against gastric ulcer in rats. Oxidative Med Cell Longev. 2016;2016:1–10.

    Article  Google Scholar 

  23. Moke EG, Omogbai EKI, Osagie-Eweka SDE, Uchendu AP, Omogbiya AI, Ben-Azu B, Eduviere AT, Edje KE, Umukoro EK, Anachuna KK, Asiwe JN, Ahante E, Oghoghovwe IJ. Co-administration of metformin and/or glibenclamide with losartan reverse NG-nitro-l-arginine-methyl ester-streptozotocin-induced hypertensive diabetes and haemodynamic sequelae in rats. Microvasc Res. 2023;147: 104497.

    Article  CAS  PubMed  Google Scholar 

  24. Erejuwa OO, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salleh MSM, Gurtu S. Glibenclamide or metformin combined with honey improves glycemic control in streptozotocin-induced diabetic rats. Int J Biol Sci. 2011;7(2):244–52. https://doi.org/10.7150/ijbs.7.244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szalai Z, Szász A, Nagy I, Puskás LG, Kupai K, Király A, Berkó AM, Pósa A, Strifler G, Baráth Z, Nagy LI, Szabó R, Pávó I, Murlasits Z, Gyöngyösi M, Varga C. Anti-inflammatory effect of recreational exercise in TNBS-induced colitis in rats: role of NOS/HO/MPO system. Oxidative Med Cell Longev. 2014;2014:925981. https://doi.org/10.1155/2014/925981.

    Article  CAS  Google Scholar 

  26. Hsing AW, Gao YT, Chua S, Deng J, Stanczyk FZ. Insulin resistance and prostate cancer risk. JNCI J Nat Cancer Inst. 2003;95(1):67–71. https://doi.org/10.1093/jnci/95.1.67.

    Article  CAS  PubMed  Google Scholar 

  27. Park JM, Bong HY, Jeong HI, Kim YK, Kim JY, Kwon O. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats. Nurs Res Pract. 2009;3(4):272. https://doi.org/10.4162/nrp.2009.3.4.272.

    Article  CAS  Google Scholar 

  28. Abdulwahab DA, El-Missiry MA, Shabana S, Othman AI, Amer ME. Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation and apoptosis in T2DM-induced rats. Heliyon. 2021;7(3):e06474. https://doi.org/10.1016/j.heliyon.2021.e06474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim BH, Joo Y, Kim MS, Choe HK, Tong Q, Kwon O. Effects of intermittent fasting on the circulating levels and circadian rhythms of hormones. Endocrinol Metab (Seoul, Korea). 2021;36(4):745–56. https://doi.org/10.3803/EnM.2021.405.

    Article  CAS  Google Scholar 

  30. Chijiokwu EA, Nwangwa EK, Oyovwi MO, Naiho AO, Emojevwe V, Ohwin EP, Ehiwarior PA, Ojugbeli ET, Nwabuoku US, Oghenetega OB, Ogheneyoma OO. Intermittent fasting and exercise therapy abates STZ-induced diabetotoxicity in rats through modulation of adipocytokines hormone, oxidative glucose metabolic, and glycolytic pathway. Physiol Rep. 2022;10(20): e15279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oza MJ, Kulkarni YA. Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia. Front Pharmacol. 2018;9:739. https://doi.org/10.3389/fphar.2018.00739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahmoud AM. Hematological alterations in diabetic rats - role of adipocytokines and effect of citrus flavonoids. EXCLI J. 2013;12:647–57.

    PubMed  PubMed Central  Google Scholar 

  33. Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diab Complicat. 2012;26(6):483–90. https://doi.org/10.1016/j.jdiacomp.2012.06.001.Mahmoud,A.M.

    Article  Google Scholar 

  34. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beck-Nielsen H. Insulin resistens: organ manifestationer of cellulaere mekanismer. Ugeskr Laeger. 2002;164(16):2130–5.

    PubMed  Google Scholar 

  36. Caliskan H, Akat F, Omercioglu G, Bastug G, Ficicilar H, Bastug M. Aerobic exercise has an anxiolytic effect on streptozotocin-induced diabetic rats. Acta Neurobiol Exp. 2020;80(3):245–55.

    Article  Google Scholar 

  37. Caliskan H, Akat F, Tatar Y, Zaloglu N, Dursun AD, Bastug M, Ficicilar H. Effects of exercise training on anxiety in diabetic rats. Behav Brain Res. 2019;376:112084. https://doi.org/10.1016/j.bbr.2019.112084.

    Article  CAS  PubMed  Google Scholar 

  38. Munhoz AC, Vilas-Boas EA, Panveloski-Costa AC, Leite JSM, Lucena CF, Riva P, Emilio H, Carpinelli AR. Intermittent fasting for twelve weeks leads to increases in fat mass and hyperinsulinemia in young female Wistar rats. Nutrients. 2021;12:1029.

    Article  Google Scholar 

  39. Adesoji F, Oluwakemi A. Differential effect of honey on selected variables in alloxan-induced and fructose-induced diabetic rats. African J Biomed Res. 2008;11(39):191–196

  40. Meo SA, Ansari MJ, Sattar K, Chaudhary HU, Hajjar W, Alasiri S. Honey and diabetes mellitus: obstacles and challenges–road to be repaired. Saudi J Biol Sci. 2017;24(5):1030–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jayaraman S, Devarajan N, Rajagopal P, Babu S, Ganesan SK, Veeraraghavan VP, Palanisamy CP, Cui B, Periyasamy V, Chandrasekar K. β-Sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats. Molecules. 2021;26(7):2101. https://doi.org/10.3390/molecules26072101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balamash KS, Alkreathy HM, Al-Gahdali EH, Khoja SO, Ahmad A. Comparative biochemical and histopathological studies on the efficacy of metformin and virgin olive oil against streptozotocin-induced diabetes in Sprague-Dawley rats. J Diab Res. 2018;2018:1–10. https://doi.org/10.1155/2018/4692197.

    Article  CAS  Google Scholar 

  43. Wei S, Han R, Zhao J, Wang S, Huang M, Wang Y, Chen Y. Intermittent administration of a fasting-mimicking diet intervenes in diabetes progression, restores β cells and reconstructs gut microbiota in mice. Nutr Metab. 2018;15:1–12. https://doi.org/10.1186/s12986-018-0318-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the technical personnel of Delta State University’s Department of Physiology in Abraka, Nigeria.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization E.A.C., N.E.K., M.O.O.; data curation, writing original draft preparation M.O.O., B.A.B., A.O.N.; review and editing B.A.B., E.G.N., N.E.K., M.O.O.; supervision N.E.K.; validation N.E.K., E.V.; funding acquisition E.A.C., N.E.K., P.A.E., U.D.S. All authors have read and agreed to the publishing of the manuscript.

Corresponding author

Correspondence to Benneth Ben-Azu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The Ethical Review Committee of Delta State University gave their approval to perform this study on 09/11/2021 with the reference number REC/FBMS/DELSU/21/121. The Delta State University Ethical Review Committee (DSUERC) guarantees that all institutional guidelines and regulations are followed, as well as that all adverse events are reported to the DSUERC as soon as possible.

Consent to participate

Not applicable.

Consent for publication

All authors gave their consents for the article to be published.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chijiokwu, E.A., Nwangwa, E.K., Oyovwi, M.O. et al. Possible homeostatic, glucose uptake mechanisms and hepato-pancreatic histological effects of intermittent fasting, exercise, starvation, and honey in streptozotocin-induced diabetes in rats. Nutrire 48, 16 (2023). https://doi.org/10.1186/s41110-023-00204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-023-00204-z

Keywords

Navigation