Introduction

Mesenchymal stem cells (MSCs) have been used in clinics to treat a variety of human diseases [1,2,3,4]. MSCs can be isolated from multiple tissues, such as bone marrow, umbilical cord tissue, adipose tissue and dental pulp [5,6,7]. The minimal criteria for MSC identification were established by the International Society for Cellular Therapy (ISCT) in 2006 [8]. However, the standards for the quality assessment of MSCs from specific tissue resources have not yet been reported.

Human mesenchymal stem cells from dental pulp (hMSC-DP) have been isolated and extensively studied [9, 10]. Their superior proliferation, multi-differentiation, and immunomodulatory capacities have been reported [11,12,54]. In this study, we found that hMSC-DP at early passages such as P5 show optimal immunoregulation effects in vitro in a T cell coculture system and in vivo in a DSS-induced colitis mouse model. However, continued passaging (to P10 and beyond) reduces their therapeutic capacity for colitis mice, which may relate to their diminished ability to induce T cell apoptosis [28].

CD146 was initially identified as a specific marker of malignant melanoma [55]. Previous studies showed that CD146 is expressed on the surface of human bone marrow MSCs, human umbilical cord-derived MSCs, human adipose tissue-derived MSCs, DPSCs and SHED [36, 42, 56,57,58]. MSCs with high expression of CD146 show elevated osteogenic and immunoregulatory abilities compared to those with low CD146 expression [41, 42, 56]. Here, we found that the expression levels of traditional MSC surface markers, including CD73, CD90 and CD105, fail to reflect the potency of hMSC-DP, while the expression level of CD146 correlates with hMSC-DP capacity for proliferation, differentiation, and immunoregulation [26, 59]. Therefore, we propose CD146 as a functional surface molecule to predict the quality of hMSC-DP.

ERK/p-ERK pathway plays a critical role in regulating proliferation, immunoregulation and differentiation of MSCs [27, 60, 61]. Previous studies showed that CD146 expression is associated with the activation of ERK pathway during epithelial-mesenchymal transition [62] and tumor angiogenesis [63]. In this study, we demonstrated that CD146 maintained cell proliferation and immunomodulation through ERK/p-ERK pathway, but not osteogenic differentiation. Usually, a highly proliferative state is incompatible with differentiation in MSCs. The controversial role of ERK signaling has been discussed in the context of osteogenic differentiation of MSCs [45]. Activation of ERK signaling in human bone marrow-derived MSCs promotes osteogenic differentiation [64, 65], while upregulation of ERK/p-ERK pathway contributes to the suppression of osteogenesis of MSCs [27, 44, 46]. ERK/p-ERK may regulate other pathways, such as PI3-kinase/Akt or P38 pathway, to affect osteogenic differentiation of hMSC-DP [66, 67].

The minimal criteria for defining MSCs proposed by ISCT are quite basic and general [8], but it may fail to totally reflect the comprehensive characteristics of MSCs, such as their trophic activity [68] and immunomodulatory capacity [28]. Therefore, it may be insufficient to predict the potency of MSCs for clinical applications. Moreover, different tissue-derived MSCs may exhibit parent tissue specificity and possess different functional potential [69]. With the improvement of our understanding of the functional and tissue-specific characteristics of MSCs, it is necessary to define the criteria of tissue-specific MSCs for translational precision therapies. To meet upcoming requirements for defining optimal MSCs for clinical application, we propose additional criteria to define the potency of hMSC-DP: (1) Adherence to plastic forming CFU-F in serum-free culture conditions; (2) CD146 expressed by over 30% of cells; (3) Neural differentiation potential. These added criteria aim for standardized identification of hMSC-DP for clinical use. In our study, we found that 10–80% of SHED and 5–70% of DPSCs expressed CD146, which was positively correlated with stem cell function. Some critical capacities of hMSC-DP were significantly decreased with the reduced expression of CD146 at passage 10. The positive rate of CD146 expression detected by flow cytometry was about 30–40% at passage 10 in our study. Therefore, we propose that CD146 can serve as a functional surface molecule to evaluate the potency of hMSC-DP. When CD146 positive rate is above 30%, hMSC-DP can provide optimal therapeutic effect in DDS-induced colitis mouse model.

Conclusion

We explored the physiological and functional status of hMSC-DP in the SF culture system and established minimal criteria to identify the potency of hMSC-DP for potential clinical application. CD146 is a functional surface molecule that reflects the potency of hMSC-DP.