Introduction

Postoperative cognitive dysfunction (POCD) is defined as long-term cognitive impairment that occurs weeks to months after surgery. The incidence of POCD in major non-cardiac surgery patients aged > 65 years has been reported to be 25.8% at one week and 9.9% at three months postoperatively [1,2,3,4]. Although the exact pathophysiology behind the development of POCD is not fully understood, it is believed to be caused by the following mechanisms: blood–brain barrier damage, neuroinflammatory responses, abnormal synaptic transmission, neuronal apoptosis, oxidative stress, abnormal amyloid-beta deposition and Tau protein phosphorylation, polymorphisms of the apolipoprotein E gene, and abnormal energy metabolism [5,6,7]. In addition, long-standing geriatric POCD can be a consequence of Alzheimer’s disease, decreasing quality of life and imposing a significant economic burden on families and society [8]. With the growing elderly population worldwide, the need for surgical procedures is rapidly increasing, leading to a high prevalence of POCD. However, our understanding and diagnosis of POCD still encounter numerous challenges. Therefore, there is an urgent need to explore the pathogenesis of POCD from a new perspective and identify new targets for drug therapy.

Itaconate is an endogenous metabolite derived from the tricarboxylic acid cycle and is produced by cis-aconitic acid decarboxylation catalyzed by immune response gene 1 (IRG1) in the mitochondrial matrix [9]. Itaconate is an immunoregulatory metabolite that activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In recent years, it has been shown that itaconate can attenuate neuroinflammation and exert dopamine neuroprotection in Parkinson’s disease through inhibition of NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome. The mechanism of this neuroprotective effect of itaconate involves the scaffold protein p62/Nrf2/Heme oxygenase 1 (HO-1)/Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) axis pathway in microglia [

Availability of data and materials

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number (s) can be found below: NCBI BioProject (https://www.ncbi.nlm.nih.gov/sra/PRJNA1078590) and MetaboLights repository (https://www.ebi.ac.uk/metabolights/editor/study/MTBLS9593). Other datasets used and analyzed during this study can be obtained from the corresponding author upon reasonable request.

References

  1. Evered L, Silbert B, Knopman DS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-20181. J Alzheimers Dis. 2018;66(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  2. Leslie M. The post-op brain. Science. 2017;356(6341):898–900.

    Article  CAS  PubMed  Google Scholar 

  3. Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet. 1998;351(9106):857–61.

    Article  CAS  PubMed  Google Scholar 

  4. Wei P, Zheng Q, Liu H, et al. Nicotine-induced neuroprotection against cognitive dysfunction after partial hepatectomy involves activation of BDNF/TrkB signaling pathway and inhibition of NF-kappaB signaling pathway in aged rats. Nicotine Tob Res. 2018;20(4):515–22.

    Article  CAS  PubMed  Google Scholar 

  5. Cao L, Wang K, Gu T, et al. Association between APOE epsilon 4 allele and postoperative cognitive dysfunction: a meta-analysis. Int J Neurosci. 2014;124(7):478–85.

    Article  CAS  PubMed  Google Scholar 

  6. Cascella M, Bimonte S. The role of general anesthetics and the mechanisms of hippocampal and extra-hippocampal dysfunctions in the genesis of postoperative cognitive dysfunction. Neural Regen Res. 2017;12(11):1780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feinkohl I, Winterer G, Pischon T. Diabetes is associated with risk of postoperative cognitive dysfunction: A meta-analysis. Diabetes Metab Res Rev. 2017;33(5): e2884.

    Article  Google Scholar 

  8. Wu Z, Zhang M, Zhang Z, et al. Ratio of beta-amyloid protein (Abeta) and Tau predicts the postoperative cognitive dysfunction on patients undergoing total hip/knee replacement surgery. Exp Ther Med. 2018;15(1):878–84.

    CAS  PubMed  Google Scholar 

  9. Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556(7699):113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. **a N, Madore V, Albalakhi A, et al. Microglia-dependent neuroprotective effects of 4-octyl itaconate against rotenone-and MPP+-induced neurotoxicity in Parkinson’s disease. Sci Rep. 2023;13(1):15539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun G, Zhang R, Liu C, et al. Itaconate attenuates neuroinflammation and exerts dopamine neuroprotection in Parkinson’s disease through inhibiting NLRP3 inflammasome. Brain Sci. 2022;12(9):1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lampropoulou V, Sergushichev A, Bambouskova M, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016;24(1):158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Swain A, Bambouskova M, Kim H, et al. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nat Metab. 2020;2(7):594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meiser J, Kraemer L, Jaeger C, et al. Itaconic acid indicates cellular but not systemic immune system activation. Oncotarget. 2018;9(63):32098–107.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cordes T, Lucas A, Divakaruni AS, et al. Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. Mol Metab. 2020;32:122–35.

    Article  CAS  PubMed  Google Scholar 

  16. Liu R, Gong Y, **a C, et al. Itaconate: A promising precursor for treatment of neuroinflammation associated depression. Biomed Pharmacother. 2023;167: 115521.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang P, Wang Y, Yang W, et al. 4-Octyl itaconate regulates immune balance by activating Nrf2 and negatively regulating PD-L1 in a mouse model of sepsis. Int J Biol Sci. 2022;18(16):6189–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang B, Wu H, Zheng L, et al. Activation of Nrf2 signaling by 4-octyl itaconate attenuates the cartilaginous endplate degeneration by inhibiting E3 ubiquitin ligase ZNF598. Osteoarthritis Cartilage. 2023;31(2):213–27.

    Article  CAS  PubMed  Google Scholar 

  19. Yang W, Wang Y, Huang Y, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed Pharmacother. 2023;159: 114301.

    Article  CAS  PubMed  Google Scholar 

  20. Singh A, Venkannagari S, Oh KH, et al. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 2016;11(11):3214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu Z, Xu D, Meng H, et al. 4-octyl itaconate protects against oxidative stress-induced liver injury by activating the Nrf2/Sirt3 pathway through AKT and ERK1/2 phosphorylation. Biochem Pharmacol. 2024;220: 115992.

    Article  CAS  PubMed  Google Scholar 

  22. Cui Y, Zhang Z, Lv M, et al. Chromatin target of protein arginine methyltransferases alleviates cerebral ischemia/reperfusion-induced injury by regulating RNA alternative splicing. iScience. 2024;27(1):108688.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao R, Zhou X, Zhao Z, et al. Farrerol alleviates cerebral ischemia-reperfusion injury by promoting neuronal survival and reducing neuroinflammation. Mol Neurobiol. 2024. https://doi.org/10.1007/s12035-024-04031-9.

    Article  PubMed  Google Scholar 

  24. Kong X, Yao X, Ren J, et al. tDCS regulates ASBT-3-OxoLCA-PLOD2-PTEN signaling pathway to confer neuroprotection following rat cerebral ischemia-reperfusion injury. Mol Neurobiol. 2023;60(11):6715–30.

    Article  CAS  PubMed  Google Scholar 

  25. Lai Z, Shan W, Li J, et al. Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry. 2021;26(12):7167–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiu G, Wang P, Rao J, et al. Dexmedetomidine inhibits paraventricular corticotropin-releasing hormone neurons that attenuate acute stress-induced anxiety-like behavior in mice. Anesthesiology. 2024. https://doi.org/10.1097/ALN.0000000000004982.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kong X, Hu W, Cui Y, et al. Transcranial direct-current stimulation regulates MCT1-PPA-PTEN-LONP1 signaling to confer neuroprotection after rat cerebral ischemia-reperfusion injury. Mol Neurobiol. 2022;59(12):7423–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mellios N, Feldman DA, Sheridan SD, et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry. 2018;23(4):1051–65.

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen BT, Shin EJ, Jeong JH, et al. Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway. J Ginseng Res. 2023;47(4):561–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dilmen OK, Meco BC, Evered LA, et al. Postoperative neurocognitive disorders: a clinical guide. J Clin Anesth. 2024;92: 111320.

    Article  PubMed  Google Scholar 

  31. Mahanna-Gabrielli E, Schenning KJ, Eriksson LI, et al. State of the clinical science of perioperative brain health: report from the American society of anesthesiologists brain health initiative summit 2018. Br J Anaesth. 2019;123(4):464–78.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vacas S, Cole DJ, Cannesson M. Cognitive decline associated with anesthesia and surgery in older patients. JAMA. 2021. https://doi.org/10.1001/jama.2021.4773.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Skvarc DR, Berk M, Byrne LK, et al. Post-operative cognitive dysfunction: an exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev. 2018;84:116–33.

    Article  PubMed  Google Scholar 

  34. Evered L, Atkins K, Silbert B, et al. Acute peri-operative neurocognitive disorders: a narrative review. Anaesthesia. 2022;77(Suppl 1):34–42.

    Article  PubMed  Google Scholar 

  35. Yang T, Velagapudi R, Terrando N. Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol. 2020;21(11):1319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei P, Yang F, Zheng Q, et al. The potential role of the NLRP3 inflammasome activation as a link between mitochondria ROS generation and neuroinflammation in postoperative cognitive dysfunction. Front Cell Neurosci. 2019;13:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68(3):360–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang T, Xu G, Newton PT, et al. Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders. Br J Anaesth. 2019;122(3):350–60.

    Article  CAS  PubMed  Google Scholar 

  40. Terrando N, Eriksson LI, Ryu JK, et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol. 2011;70(6):986–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takazawa T, Horiuchi T, Orihara M, et al. Prevention of postoperative cognitive dysfunction by minocycline in elderly patients after total knee arthroplasty: a randomized, double-blind, placebo-controlled clinical trial. Anesthesiology. 2023;138(2):172–83.

    Article  CAS  PubMed  Google Scholar 

  42. McFadden BA, Purohit S. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J Bacteriol. 1977;131(1):136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruetz M, Campanello GC, Purchal M, et al. Itaconyl-CoA forms a stable biradical in methylmalonyl-CoA mutase and derails its activity and repair. Science. 2019;366(6465):589–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Xu Y, Li W, et al. Itaconate inhibits SYK through alkylation and suppresses inflammation against hvKP induced intestinal dysbiosis. Cell Mol Life Sci. 2023;80(11):337.

    Article  CAS  PubMed  Google Scholar 

  45. Pan W, Zhao J, Wu J, et al. Dimethyl itaconate ameliorates cognitive impairment induced by a high-fat diet via the gut-brain axis in mice. Microbiome. 2023;11(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luo Z, Sheng Z, Hu L, et al. Targeted macrophage phagocytosis by Irg1/itaconate axis improves the prognosis of intracerebral hemorrhagic stroke and peritonitis. EBioMedicine. 2024;101: 104993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li W, Li Y, Kang J, et al. 4-octyl itaconate as a metabolite derivative inhibits inflammation via alkylation of STING. Cell Rep. 2023;42(3): 112145.

    Article  CAS  PubMed  Google Scholar 

  48. **ong J, Lu DL, Chen BQ, et al. Dimethyl itaconate reduces cognitive impairment and neuroinflammation in APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Neuromol Med. 2023;25(2):179–92.

    Article  CAS  Google Scholar 

  49. Liu Y, **a P, Zong S, et al. Inhibition of Alzheimer’s disease by 4-octyl itaconate revealed by RNA-seq transcriptome analysis. Eur J Pharmacol. 2024;968: 176432.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Z, Li J, Wang B, et al. Ubiquitin-specific protease 22 promotes neural stem cells stemness maintenance and adult hippocampal neurogenesis, contributing to cognitive recovery following traumatic brain injury. Neuroscience. 2022;496:219–29.

    Article  CAS  PubMed  Google Scholar 

  51. Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang J, Kin Pong U, Yang F, et al. Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage. Theranostics. 2022;12(1):143–66.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sun J, Zhou X, Wu J, et al. Ligustilide enhances hippocampal neural stem cells activation to restore cognitive function in the context of postoperative cognitive dysfunction. Eur J Neurosci. 2021;54(3):5000–15.

    Article  PubMed  Google Scholar 

  54. Lang HL, Zhao YZ, **ao RJ, et al. Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes. Neural Regen Res. 2023;18(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  55. Boorman E, Killick R, Aarsland D, et al. NRF2: an emerging role in neural stem cell regulation and neurogenesis. Free Radic Biol Med. 2022;193(Pt 1):437–46.

    Article  CAS  PubMed  Google Scholar 

  56. Chen Y, Dong J, Gong L, et al. Fucoxanthin, a marine derived carotenoid, attenuates surgery-induced cognitive impairments via activating Akt and ERK pathways in aged mice. Phytomedicine. 2023;120: 155043.

    Article  CAS  PubMed  Google Scholar 

  57. Song Z, Zhang Y, Zhang H, et al. Isoliquiritigenin triggers developmental toxicity and oxidative stress-mediated apoptosis in zebrafish embryos/larvae via Nrf2-HO1/JNK-ERK/mitochondrion pathway. Chemosphere. 2020;246: 125727.

    Article  CAS  PubMed  Google Scholar 

  58. He F, Ye B, Wu X, et al. CHFR promotes metastasis of human gastric carcinoma by activating AKT and ERK via NRF2- ROS axis. BMC Gastroenterol. 2023;23(1):114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu N, Liang Y, Wei T, et al. The role of ferroptosis mediated by NRF2/ERK-regulated ferritinophagy in CdTe QDs-induced inflammation in macrophage. J Hazard Mater. 2022;436: 129043.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

Support for this study was provided from the National Natural Science Foundation of China (Nos.82101255), the Natural Science Foundation of Shandong Province (ZR2020QH291 and ZR2020MH126), the Scientific Research Foundation of Qilu Hospital of Shandong University (QDKY2023ZD02), the Qingdao Key Health Discipline Development Fund (QDZDZK2022094) and the Qingdao Outstanding Health Professional Development Fund (2023).

Author information

Authors and Affiliations

Authors

Contributions

XK and PW performed the experiment and wrote the manuscript. WL, CL, XL, performed the in vivo experiments. LX, HF, KS performed analyzed the data. PW and XK reviewed the statistical analysis and updated the figures in the revised manuscript. JL and PW conceived the project and revised the manuscript.

Corresponding authors

Correspondence to Penghui Wei or Jianjun Li.

Ethics declarations

Ethics approval and consent to participate

All animal experiments were conducted in compliance with National Institutes of Health Guidelines and were approved by the institutional animal care and use committee of the Qilu hospital (Qingdao) (KYDWLL-202107).

Consent for publication

All authors concur with the submission.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Lyu, W., Lin, X. et al. Itaconate alleviates anesthesia/surgery-induced cognitive impairment by activating a Nrf2-dependent anti-neuroinflammation and neurogenesis via gut-brain axis. J Neuroinflammation 21, 104 (2024). https://doi.org/10.1186/s12974-024-03103-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12974-024-03103-w

Keywords