Background

Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction that is not fully reversible, leading to respiratory insufficiency and functional disability [1, 36, 37]. In the present study, however, VEGF levels in the lungs were not different between IL-33−/− and WT mice following instillation of PPE or CS; therefore, VEGF may not have been affected in our emphysema models.

This study had some limitations. First, although IL-33-/- mice displayed enhanced emphysematous changes, this only occurred when IL-33 was completely deficient. Treatment with anti-ST2 receptor antibody did not enhance emphysema development, suggesting that partial IL-33 blockade is not sufficient to induce emphysema. Whether blockade of the IL-33-ST2 axis is harmful or beneficial for COPD in the clinical setting remains unclear. Second, treatment with IL-33 did not significantly suppress emphysema development. However, modifications to the dose and timing of IL-33 administration may produce different outcomes. Thus, the effects of IL-33 supplementation for COPD remain unclear. Third, we have not assessed the CS-induced emphysema model, which more closely mimics human emphysema. We have shown that a congenital IL-33 defect might enhance elastase- and CSE-induced emphysema. Collectively, our results indicate that clinical manipulations of the IL-33-ST2 axis may have varying effects on lung structure.

Conclusions

We demonstrated that the loss of IL-33 may enhance the development of emphysema. Our data suggested that although IL-33 may affect CS-induced airway inflammation, complete loss of IL-33 may enhance emphysema and potentially be harmful in patients with COPD.