Log in

Nectin-3 Is Increased in the Cell Junctions of the Uterine Epithelium at Implantation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine luminal epithelial cells (UECs) undergo the plasma membrane transformation in the transition to receptivity. This involves transient alterations in the apical junctional complex (AJC) including increases to the depth and complexity of the tight junction, loss of the adherens junction, and a decrease in the number of desmosomes along the lateral cell membranes. Nectin-3 is key protein involved in the structure and function of the AJC. This study, used immunofluorescence, Western blotting, colocalization, and coimmunoprecipitation analyses, to investigate whether nectin-3 was present in the rat uterus and was regulated by hormones and the blastocyst during early pregnancy. The results showed that nectin-3 was present in UECs as 3 molecular weight protein isoforms (80 kDa, 60 kDa, and 32 kDa). At the time of fertilization (day 1 of pregnancy), nectin-3 was localized basally, but at the time of implantation, (day 6 of pregnancy) when UECs were receptive, nectin-3 increased in the cellular junctions. When UECs returned to the nonreceptive state (day 9 of pregnancy), nectin-3 redistributed back to the cell cytoplasm. This study also showed that nectin-3 localization at the cell junctions was likely to be controlled by progesterone; however, neither ovarian hormones nor the blastocyst regulated protein abundance. This study further showed that while nectin-3 localized to the tight junction at the time of implantation, it did not interact with occludin or l-afadin. These results suggest that at the time of implantation, nectin-3 may contribute to the formation of the tight junction in a protein complex independent from occludin and l-afadin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murphy CR. Uterine receptivity and the plasma membrane transformation. Cell Res. 2004;14(4):259–267.

    PubMed  Google Scholar 

  2. Finn CA, Martin L. The control of implantation. Reproduction. 1974;39(1):195–206.

    CAS  Google Scholar 

  3. Wang Q, Margolis B. Apical junctional complexes and cell polarity. Kidney Int. 2007;72(12):1448–1458. doi:10.1038/sj.ki.5002579.

    CAS  PubMed  Google Scholar 

  4. Farquhar MG. Junctional complexes in various epithelia. J Cell Biol. 1963;17(2):375–412. doi:10.1083/jcb.17.2.375.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Furuse M. Molecular Basis of the Core Structure of Tight Junctions. Cold Spring Harbor Perspectives in Biology. 2010;2(1):a002907. doi:10.1101/cshperspect.a002907.

    PubMed  PubMed Central  Google Scholar 

  6. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2(4):285–293. doi:10.1038/35067088.

    CAS  PubMed  Google Scholar 

  7. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778(3):660–669. doi:10.1016/j.bbamem.2007.07.012.

    CAS  PubMed  Google Scholar 

  8. Murphy CR, Swift JG, Mukherjee TM, Rogers AW. The structure of tight junctions between uterine luminal epithelial cells at different stages of pregnancy in the rat. Cell Tissue Res. 1982;223(2):281–286.

    CAS  PubMed  Google Scholar 

  9. Murphy CR. Junctional barrier complexes undergo major alterations during the plasma membrane transformation of uterine epithelial cells. Hum Reprod. 2000;15(suppl 3):182–188.

    CAS  PubMed  Google Scholar 

  10. Preston AM, Lindsay LA, Murphy CR. Desmosomes in uterine epithelial cells decrease at the time of implantation: an ultrastructural and morphometric study. J Morphol. 2006;267(1):103–108.

    PubMed  Google Scholar 

  11. Albaghdadi AJH, Kan FWK. Endometrial receptivity defects and impaired implantation in diabetic NOD mice. Biol Reprod. 2012;87(2):30.

    PubMed  PubMed Central  Google Scholar 

  12. Ghosh D, Danielson KG, Alston JT, Heyner S. Functional differentiation of mouse uterine epithelial cells grown on collagen gels or reconstituted basement membranes. In Vitro Cell Dev Biol. 1991;27A(9):713–719.

    CAS  PubMed  Google Scholar 

  13. Illingworth IM, Kiszka I, Bagley S, Ireland GW, Garrod DR, Kimber SJ. Desmosomes are reduced in the mouse uterine luminal epithelium during the preimplantation period of pregnancy: a mechanism for facilitation of implantation. Biol Reprod. 2000;63(6):1764–1773.

    CAS  PubMed  Google Scholar 

  14. Johnson SA, Morgan G, Wooding FB. Alterations in uterine epithelial tight junction structure during the oestrous cycle and implantation in the pig. J Reprod Fertil. 1988;83(2):915–922.

    CAS  PubMed  Google Scholar 

  15. Bowen JA, Newton GR, Weise DW, Bazer FW, Burghardt RC. Characterization of a polarized porcine uterine epithelial model system. Biol Reprod. 1996;55(3):613–619.

    CAS  PubMed  Google Scholar 

  16. Mani SK, Decker GL, Glasser SR. Hormonal responsiveness by immature rabbit uterine epithelial cells polarized in vitro. Endocrinology. 1991;128(3):1563–1573.

    CAS  PubMed  Google Scholar 

  17. Winterhager E, Kühnel W. Alterations in intercellular junctions of the uterine epithelium during the preimplantation phase in the rabbit. Cell Tissue Res. 1982;224(3):517–526.

    CAS  PubMed  Google Scholar 

  18. Winterhager E, Mendoza AS. Structure of quick-frozen tight junctions in uterine epithelium of pseudopregnant rabbits. Z Mikrosk Anat Forsch. 1987;101(1):179–185.

    CAS  PubMed  Google Scholar 

  19. Murphy CR, Swift JG, Need JA, Mukherjee TM, Rogers AW. A freeze-fracture electron microscopic study of tight junctions of epithelial cells in the human uterus. Anat Embryol (Berl). 1982;163(4):367–370. doi:10.1007/BF00305552.

    CAS  Google Scholar 

  20. Murphy CR, Rogers PA, Hosie MJ, Leeton J, Beaton L. Tight junctions of human uterine epithelial cells change during the menstrual cycle: a morphometric study. Acta Anat (Basel). 1992;144(1):36–38.

    CAS  Google Scholar 

  21. Someya M, Kojima T, Ogawa M, et al. Regulation of tight junctions by sex hormones in normal human endometrial epithelial cells and uterus cancer cell line Sawano. Cell Tissue Res. 2013;354(2):481–494. doi:10.1007/s00441-013-1676-9.

    CAS  PubMed  Google Scholar 

  22. Nicholson MDO, Lindsay LA, Murphy CR. Ovarian hormones control the changing expression of claudins and occludin in rat uterine epithelial cells during early pregnancy. Acta Histochem. 2010;112(1):42–52.

    CAS  PubMed  Google Scholar 

  23. Orchard MD, Murphy CR. Alterations in tight junction molecules of uterine epithelial cells during early pregnancy in the rat. Acta Histochem. 2002;104(2):149–155.

    CAS  PubMed  Google Scholar 

  24. Hyland RA, Shaw TJ, Png FY, Murphy CR. Pan-cadherin concentrates apically in uterine epithelial cells during uterine closure in the rat. Acta Histochem. 1998;100(1):75–81.

    CAS  PubMed  Google Scholar 

  25. Slater M, Murphy CR, Barden JA. Tenascin, E-cadherin and P2X calcium channel receptor expression is increased during rat blastocyst implantation. Histochem J. 2002;34(1-2):13–19.

    CAS  PubMed  Google Scholar 

  26. Preston AM, Lindsay LA, Murphy CR. Progesterone treatment and the progress of early pregnancy reduce desmoglein 1&2 staining along the lateral plasma membrane in rat uterine epithelial cells. Acta Histochem. 2003;106(5):345–351.

    Google Scholar 

  27. Satoh-Horikawa KK, Nakanishi HH, Takahashi KK, et al. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem. 2000;275(14):10291–10299.

    CAS  PubMed  Google Scholar 

  28. Takai Y. Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci. 2003;116(1):17–27.

    CAS  PubMed  Google Scholar 

  29. Kuramitsu K, Ikeda W, Inoue N, Tamaru Y, Takai Y. Novel role of nectin: implication in the co-localization of JAM-A and claudin-1 at the same cell-cell adhesion membrane domain. Genes Cells. 2008;13(8):797–805.

    CAS  PubMed  Google Scholar 

  30. Takai YY, Ikeda WW, Ogita HH, Rikitake YY. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Cell Dev Biol. 2007;24:309–342.

    Google Scholar 

  31. Inagaki M, Irie K, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Takai Y. Role of cell adhesion molecule nectin-3 in spermatid development. Genes Cells. 2006;11(9):1125–1132. doi:10.1111/j.1365-2443.2006.01006.x.

    CAS  PubMed  Google Scholar 

  32. Ballester M, Gonin J, Rodenas A, et al. Eutopic endometrium and peritoneal, ovarian and colorectal endometriotic tissues express a different profile of Nectin-1, -3, -4 and nectin-like molecule 2. Hum Reprod. 2012;27(11):3179–3186.

    CAS  PubMed  Google Scholar 

  33. Okabe N, Ozaki-Kuroda K, Nakanishi H, Shimizu K, Takai Y. Expression patterns of nectins and afadin during epithelial remodeling in the mouse embryo. Dev Dyn. 2004;230(1):174–186.

    CAS  PubMed  Google Scholar 

  34. Swingle WW, Seay P, Perlmutt J, Collins EJ, George Barlow JR, Fedor EJ. An experimental study of pseudopregnancy in rat. Am J Physiol—Leg Content. 1951;167(3):586–592.

    CAS  Google Scholar 

  35. Ljungkvist I. Attachment reaction of rat uterine luminal epithelium. II. The effect of progesterone on the morphology of the uterine glands and the luminal epithelium of the spayed, virgin rat. Acta Soc Med Ups. 1971;76(3-4):110–126.

    CAS  PubMed  Google Scholar 

  36. Ljungkvist I. Attachment reaction of rat uterine luminal epithelium. 3. The effect of estradiol, estrone and estriol on the morphology of the luminal epithelium of the spayed, virgin rat. Acta Soc Med Ups. 1971;76(3-4):139–157.

    CAS  PubMed  Google Scholar 

  37. Murphy CR, Rogers AW. Effects of ovarian hormones on cell membranes in the rat uterus. III. The surface carbohydrates at the apex of the luminal epithelium. Cell Biophys. 1981;3(4):305–320.

    CAS  PubMed  Google Scholar 

  38. Kaneko YY, Lindsay LALA, Murphy CRCR. Focal adhesions disassemble during early pregnancy in rat uterine epithelial cells. Reprod Fertil Dev. 2008;20(8):892–899.

    CAS  PubMed  Google Scholar 

  39. Psychoyos A. Hormonal control of ovoimplantation. Vitam Horm. 1973;31:201–256.

    CAS  PubMed  Google Scholar 

  40. Reymond N, Borg JP, Lecocq E, et al. Human nectin3/PRR3: a novel member of the PVR/PRR/nectin family that interacts with afadin. Gene. 2000;255(2):347–355.

    CAS  PubMed  Google Scholar 

  41. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectin-like molecules: Roles in cell adhesion, migration, and polarization. Cancer Sci. 2003;94(8):655–667.

    CAS  PubMed  Google Scholar 

  42. Tanaka-Okamoto M, Hori K, Ishizaki H, et al. Involvement of afadin in barrier function and homeostasis of mouse intestinal epithelia. J Cell Sci. 2011;124(pt 13):2231–2240.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim J, Chang A, Dudak A, Federoff HJ, Lim ST. Characterization of nectin processing mediated by presenilin-dependent γ-secretase. J Neurochem. 2011;119(5):945–956.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mizoguchi A, Nakanishi H, Kimura K, et al. Nectin: an adhesion molecule involved in formation of synapses. J Cell Biol. 2002;156(3):555–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamada T, Kuramitsu K, Rikitsu E, Kurita S, Ikeda W, Takai Y. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells. Genes Cells. 2013;18(11):985–998.

    CAS  PubMed  Google Scholar 

  46. Krause G, Winkler L, Mueller SL, Haseloff RF. Structure and function of claudins. Biochim Biophys Acta. 2008;1778(3):631–645.

    CAS  PubMed  Google Scholar 

  47. Cummins PM. Occludin: one protein, many forms. Mol Cell Biol. 2012;32(2):242–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. 2009;1(2):a002584.

    PubMed  PubMed Central  Google Scholar 

  49. O’Leary S, Jasper MJ, Robertson SA, Armstrong DT. Seminal plasma regulates ovarian progesterone production, leukocyte recruitment and follicular cell responses in the pig. Reproduction. 2006;132(1):147–158.

    PubMed  Google Scholar 

  50. Martin TA, Lane J, Harrison GM, Jiang WG. The expression of the Nectin complex in human breast cancer and the role of Nectin-3 in the control of tight junctions during metastasis. PLoS One. 2013;8(12):e82696. doi:10.1371/journal.pone.0082696.

    PubMed  PubMed Central  Google Scholar 

  51. Takahashi K. Nectin/PRR: An immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with afadin, a PDZ domain-containing protein. J Cell Biol. 1999;145(3):539–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mandai K, Rikitake Y, Shimono Y, Takai Y. Afadin/AF-6 and canoe: roles in cell adhesion and beyond. Prog Mol Biol Transl Sci. 2013;116:433–454.

    CAS  PubMed  Google Scholar 

  53. Kobayashi R, Kurita S, Miyata M, et al. s-Afadin binds more preferentially to the cell adhesion molecules nectins than l-afadin. Genes to Cells. 2014;19(12):853–863. doi:10.1111/gtc.12185.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie E. Poon PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poon, C.E., Madawala, R.J., Dowland, S.N. et al. Nectin-3 Is Increased in the Cell Junctions of the Uterine Epithelium at Implantation. Reprod. Sci. 23, 1580–1592 (2016). https://doi.org/10.1177/1933719116648216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116648216

Keywords

Navigation