Log in

Oxidative Stress Status and Placental Implications in Diabetic Rats Undergoing Swimming Exercise After Embryonic Implantation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The potential benefits and risks of physical exercise on fetal development during pregnancy remain unclear. The aim was to analyze maternal oxidative stress status and the placental morphometry to relate to intrauterine growth restriction (IUGR) from diabetic female rats submitted to swimming program after embryonic implantation. Pregnant Wistar rats were distributed into 4 groups (11 animals/group): control—nondiabetic sedentary rats, control exercised—nondiabetic exercised rats, diabetic—diabetic sedentary rats, and diabetic exercised—diabetic exercised rats. A swimming program was used as an exercise model. At the end of pregnancy, the maternal oxidative stress status, placental morphology, and fetal weight were analyzed. The swimming program was not efficient to reduce the hyperglycemia-induced oxidative stress. This fact impaired placental development, resulting in altered blood flow and energy reserves, which contributed to a deficient exchange of nutrients and oxygen for the fetal development, leading to IUGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis and classification of diabetes millitus. Diabet Care. 2014;37(suppl 1):S81–S90.

    Article  Google Scholar 

  2. Eriksson UJ. Congenital anomalies in diabetic pregnancy. Semin Fetal Neonatal Med. 2009;14(2):85–93.

    Article  PubMed  Google Scholar 

  3. Volpato GT, Calderon IM, Sinzato S, et al. Effect of Morus nigra aqueous extract treatment on the maternal-fetal outcome, oxidative stress status and lipid profile of streptozotocin-induced diabetic rats. J Ethnopharmacol. 2011;138(3):691–696.

    Article  CAS  PubMed  Google Scholar 

  4. Jansson T, Cetin I, Powell TL, et al. Placental transport and metabolism in fetal overgrowth – A workshop report. Placenta. 2006; 27(suppl A):S109–S113.

    Article  PubMed  Google Scholar 

  5. Damasceno DC, Silva HP, Vaz GF, et al. Diabetic rats exercised prior to and during pregnancy: maternal reproductive outcome, biochemical profile, and frequency of fetal anomalies. Reprod Sci. 2013;20(7):730–738.

    Article  PubMed  Google Scholar 

  6. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol. 2007;24(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  7. Devlin JT. Effects of exercise on insulin sensitivity in humans. Diabetes Care. 1992;15(11):1690–1693.

    Article  CAS  PubMed  Google Scholar 

  8. Kim C. Gestational diabetes: risks, management, and treatment options. Int J Womens Health. 2010;2:339–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Volpato GT, Damasceno DC, Campos KE, Rocha R, Rudge MV, Calderon IM. Avaliação do efeito do exercício físico no metabolismo de ratas diabéticas prenhes. Rev Bras Med Esp. 2006; 12(5): 229–233.

    Article  Google Scholar 

  10. Volpato GT, Damasceno DC, Kempinas WG, Rudge MV, Calderon IM. Effect of exercise on the reproductive outcome and fetal development of diabetic rats. Reprod Biomed Online. 2009;19(6):852–858.

    Article  CAS  PubMed  Google Scholar 

  11. Damasceno DC, Kiss AC, Sinzato YK, et al. Maternal-fetal outcome, lipid profile and oxidative stress of diabetic rats neonatally exposed to streptozotocin. Exp Clin Endocrinol Diabetes. 2011; 119(7):408–413.

    CAS  PubMed  Google Scholar 

  12. Sinzato YK, Volpato GT, Iessi IL, et al. Neonatally induced mild diabetes in rats and its effect on maternal, placental, and fetal parameters. Exp Diabetes Res. 2012;2012:108163.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572(pt 1):25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Damasceno DC, Sinzato YK, Lima PH, et al. Effects of exposure to cigarette smoke prior to pregnancy in diabetic rats. Diabetol Metab Syndr. 2011;3:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Avery MD, Leon AS, Kopher RA. Effects of a partially homebased exercise program for women with gestacional diabetes. Obstet Gynecol. 1997;89(1):10–15.

    Article  CAS  PubMed  Google Scholar 

  16. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  17. Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol. 2001;281(6): H2289–H294.

    Article  CAS  PubMed  Google Scholar 

  18. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599–622.

    Article  CAS  PubMed  Google Scholar 

  19. Cadenas E. Basic mechanisms of antioxidant activity. Biofactors. 1997;6(4):391–397.

    Article  CAS  PubMed  Google Scholar 

  20. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and {beta}-cell dysfunction? Diabetes. 2003;52(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005;16(10):577–586.

    Article  CAS  PubMed  Google Scholar 

  22. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: Implication in redox and detoxification. Clin Chim Acta. 2003;333(1): 19–39.

    Article  CAS  PubMed  Google Scholar 

  23. Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46(11): 1733–1742.

    Article  CAS  PubMed  Google Scholar 

  24. Gisela D, Peter KD, Martina D. Oxidative stress and beta-cell dysfunction. Eur J Physiol. 2010;460(4):703–718.

    Article  CAS  Google Scholar 

  25. West IC. Radicals and oxidative stress in diabetes. Diabetes Med. 2000;17(3):171–180.

    Article  CAS  Google Scholar 

  26. Agnieszka P, Dorota R, Iren A, Maciej J, Stefan A. High glucose concentration affects the oxidant/antioxidant balance in cultured mouse podocytes. J Cell Biochem. 2011;112(6): 1661–1672.

    Article  CAS  Google Scholar 

  27. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1): 24–38.

    Article  CAS  PubMed  Google Scholar 

  28. Smith JA.Exercise, Training and Red Blood Cell Turnover. Sports Med. 1995;19(1):9–31.

    Article  CAS  PubMed  Google Scholar 

  29. Bloomer RJ, Fisher-Wellman KH. Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gender Med. 2008;5(3):218–218.

    Article  Google Scholar 

  30. Jackson MJ. Free radicals generated by contracting muscle: byproducts of metabolism or key regulators of muscle function? Free Radic Biol Med. 2008;44(2):132–141.

    Article  CAS  PubMed  Google Scholar 

  31. McArdle F, Pattwell DM, Vasilaki A, McArdle A, Jackson MJ. Intracellular generation of reactive oxygen species by contracting skeletal muscle cells. Free Radic Biol Med. 2005;39(5):651–657.

    Article  CAS  PubMed  Google Scholar 

  32. Ashton T, Rowlands CC, Jones E, et al. Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol Occup Physiol. 1998;77(6):498–502.

    Article  CAS  PubMed  Google Scholar 

  33. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–1276.

    Article  CAS  PubMed  Google Scholar 

  34. Ali MA, Yasui F, Matsugo S, Konishi T. The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction. Free Radic Res. 2000;32(5):429–438.

    Article  CAS  PubMed  Google Scholar 

  35. Berzosa C, Cebrián I, Fuentes-Broto L, et al. Acute exercise increases plasma total antioxidant status and antioxidant enzyme activities in untrained men. J Biomed Biotechnol. 2011;2011: 540458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Witt EH, Rezhick AZ, Viguie CA, Starke-Reed P, Packer L. Exercise, oxidative damage and effects of antioxidant manipulation. J Nutr. 1992; 122(3 suppl):766–773.

    Article  CAS  PubMed  Google Scholar 

  37. Brown W. The benefits of physical activity during pregnancy. J Sci Med Sport. 2002;5(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  38. Kardel KR, Kase T. Tranining during pregnancy: effects on fetal development and birth. Am J Obstet Gynecol. 1998;178(2): 280–286.

    Article  CAS  PubMed  Google Scholar 

  39. Sternfeld B, Quesenberry CP, Eskenazi B, Newman LA. Exercise during pregnancy and pregnancy outcome. Med Sci Sports Exerc. 1995;27(5):634–640.

    Article  CAS  PubMed  Google Scholar 

  40. Rosa BV, Firth EC, Blair HT, Vickers MH, Morel PC. Voluntary exercise in pregnant rats positively influences fetal growth without initiating a maternal physiological stress response. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1134–1141.

    Article  CAS  PubMed  Google Scholar 

  41. Akhavan MM, Emami-Abarghoie M, Safari M, et al. Serotonergic and noradrenergic lesions suppress the enhancing effect of maternal exercise during pregnancy on learning and memory in rat pups. Neurosci. 2008;151(4):1173–1183.

    Article  CAS  Google Scholar 

  42. Contarteze RV, Manchado Fde B, Gobatto CA, De Mello MA. Stress biomarkers in rats submitted to swimming and treadmill running exercises. Comp Biochem Physiol A Mol Integr Physiol. 2008;151(4):415–422.

    Article  PubMed  CAS  Google Scholar 

  43. Pinto ML, Shetty PS. Influence of exercise-induced maternal stress on fetal outcome in Wistar rats: inter-generational effects. Br J Nutr. 1995;73(5):645–653.

    Article  CAS  PubMed  Google Scholar 

  44. Vaughan OR, Sferruzzi-Perri AN, Fowden AL. Maternal corticosterone regulates nutrient allocation to fetal growth in mice. J Physiol. 2012;590(pt 21):5529–5540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hewitt DP, Mark PJ, Waddell BJ. Glucocorticoids prevent the normal increase in placental vascular endothelial growth factor expression and placental vascularity during late pregnancy in the rat. Endocrinology. 2006;147(12):5568–5574.

    Article  CAS  PubMed  Google Scholar 

  46. Lancha AH Jr, Recco MB, Abdalla DS, Curi R. Effect of aspartate, asparagine, and carnitine supplementation in the diet on metabolism of skeletal muscle during a moderate exercise. Physiol Behav. 1995;57(2):367–371.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Tadeu Volpato PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpato, G.T., Damasceno, D.C., Sinzato, Y.K. et al. Oxidative Stress Status and Placental Implications in Diabetic Rats Undergoing Swimming Exercise After Embryonic Implantation. Reprod. Sci. 22, 602–608 (2015). https://doi.org/10.1177/1933719114556485

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114556485

Keywords

Navigation