Log in

Episodic memory causes a slow oscillation of EEG, awakening and performance recovery from sleep episodes during monotonous psychomotor test

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The aim of this study is to detect changes in a functional state during the performance of monotonous psychomotor test. We propose that these changes represent the repeated episodes of short sleep and spontaneous awakenings from them. We also argue that spontaneous awakenings from sleep stage 2 are accompanied by high-amplitude slow oscillations (SO). 20 subjects participated in 27 experiments during daytime. They performed continuous psychomotor test in a supine position with eyes closed for 1 h. Expert scoring of SOs in the EEG, including K-complexes and other single slow waves, was performed in sleep episodes reaching sleep stage 2, defined as pauses in task performance longer than 3 s. 248 episodes with SOs occurred in time intervals without activity lasting from 3 s to 10 min. In 195 cases, at least one SO was recorded before the test performance was resumed. 248 sleep episodes with 1255 SOs were taken into analysis. It was shown that SOs occur much more frequently just before awakenings (SO1, 12 or less seconds before awakening) than within sleep episodes (12 of more seconds before awakening, SO2). Some SOs were recorded within a few seconds after behavioral awakening (SO3), which has not been previously reported. We propose the hypothesis that SOs which occurred just before resuming performance (SO1) are associated with the unconscious episodic memory that triggers awakening followed by recovery of conscious activity performed prior to falling asleep. We also describe the novel type of SO (SO3) which occurs just after awakening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

Data availability

The data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. J. Hesse, T. Gross, Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 23(8), 166 (2014). https://doi.org/10.3389/fnsys.2014.00166

    Article  Google Scholar 

  2. C.C. Lo, T. Chou, T. Penzel, T.E. Scammell, R.E. Strecker, H.E. Stanley, PCh. Ivanov, Common scale-invariant patterns of sleep-wake transitions across mammalian species. Proc. Natl. Acad. Sci. U.S.A. 101(50), 17545–17548 (2004). https://doi.org/10.1073/pnas.0408242101

    Article  ADS  Google Scholar 

  3. V.B. Dorokhov, Alpha-bursts and K-complex: phasic activation pattern during spontaneous recovery of correct psychomotor performance at difference stages of drowsiness. Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova 53(4), 503–512 (2003)

    Google Scholar 

  4. V.B. Dorokhov, A. Runnova, O.N. Tkachenko, A.O. Taranov, G.N. Arseniev, A. Kiselev, A. Selskii, A. Orlova, M. Zhuravlev, Analysis two types of K complexes on the human EEG based on classical continuous wavelet transform. Chaos 33(3), 031102 (2023). https://doi.org/10.1063/5.0143284

    Article  ADS  Google Scholar 

  5. F. Siclari, G. Bernardi, B.A. Riedner, J.J. LaRocque, R.M. Benca, G. Tononi, Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. Sleep 37(10), 1621–1637 (2014). https://doi.org/10.5665/sleep.4070

    Article  Google Scholar 

  6. G. Bernardi, F. Siclari, G. Handjaras, B.A. Riedner, G. Tononi, Local and widespread slow waves in stable nrem sleep: evidence for distinct regulation mechanisms. Front. Hum. Neurosci. 19(12), 248 (2018). https://doi.org/10.3389/fnhum.2018.00248

    Article  Google Scholar 

  7. Q. Lu, U. Hasson, K.A. Norman, A neural network model of when to retrieve and encode episodic memories. Elife 10(11), e74445 (2022). https://doi.org/10.7554/eLife.74445

    Article  Google Scholar 

  8. S. Sonkusare, M. Breakspear, C. Guo, Naturalistic stimuli in neuroscience: critically acclaimed. Trends Cogn. Sci. 23(8), 699–714 (2019). https://doi.org/10.1016/j.tics.2019.05.004

    Article  Google Scholar 

  9. T. Schreiner, T. Staudigl, Electrophysiological signatures of memory reactivation in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375(1799), 20190293 (2020). https://doi.org/10.1098/rstb.2019.0293

    Article  Google Scholar 

  10. T. Schreiner, M. Petzka, T. Staudigl, B.P. Staresina, Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nat. Commun. 12(1), 3112 (2021). https://doi.org/10.1038/s41467-021-23520-2

    Article  ADS  Google Scholar 

  11. Y. Norman, E.M. Yeagle, S. Khuvis, M. Harel, A.D. Mehta, R. Malach, Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365(6454), eaax1030 (2019). https://doi.org/10.1126/science.aax1030

    Article  Google Scholar 

  12. S. Berres, E. Erdfelder, The sleep benefit in episodic memory: an integrative review and a meta-analysis. Psychol. Bull. 147(12), 1309–1353 (2021). https://doi.org/10.1037/bul0000350

    Article  Google Scholar 

  13. T. Andrillon, A. Burns, T. Mackay, J. Windt, N. Tsuchiya, Predicting lapses of attention with sleep-like slow waves. Nat. Commun. 12(1), 3657 (2021). https://doi.org/10.1038/s41467-021-23890-7

    Article  ADS  Google Scholar 

  14. M.H. Zaky, R. Shoorangiz, G.R. Poudel, L. Yang, C.R.H. Innes, R.D. Jones, Increased cerebral activity during microsleeps reflects an unconscious drive to re-establish consciousness. Int. J. Psychophysiol. S0167–8760(23), 00429–00434 (2023). https://doi.org/10.1016/j.ijpsycho.2023.05.349

    Article  Google Scholar 

  15. G.R. Poudel, C.R. Innes, P.J. Bones, R. Watts, R.D. Jones, Losing the struggle to stay awake: divergent thalamic and cortical activity during microsleeps. Hum. Brain Mapp. 35(1), 257–269 (2014). https://doi.org/10.1002/hbm.22178

    Article  Google Scholar 

  16. W. Moorcroft, J.L. Breitenstein, Awareness of time during sleep. Ann. Med. 32(4), 236–238 (2000)

    Article  Google Scholar 

  17. S. Malloggi, F. Conte, B. Albinni, G. Gronchi, G. Ficca, F. Giganti, Sleep and psychological characteristics in habitual self-awakeners and forced awakeners. Chronobiol. Int. 39(4), 547–556 (2022). https://doi.org/10.1080/07420528.2021.2003375

    Article  Google Scholar 

  18. K. Christoff, Z.C. Irving, K.C. Fox, R.N. Spreng, J.R. Andrews-Hanna, Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17(11), 718–731 (2016). https://doi.org/10.1038/nrn.2016.113

    Article  Google Scholar 

  19. E.M. Robertson, L. Genzel, Memories replayed: reactivating past successes and new dilemmas. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375(1799), 20190226 (2020). https://doi.org/10.1098/rstb.2019.0226

    Article  Google Scholar 

  20. P. Halász, R. Bódizs, L. Parrino, M. Terzano, Two features of sleep slow waves: homeostatic and reactive aspects–from long term to instant sleep homeostasis. Sleep Med. 15(10), 1184–1195 (2014). https://doi.org/10.1016/j.sleep.2014.06.006

    Article  Google Scholar 

  21. T. Andrillon, S. Kouider, The vigilant sleeper: neural mechanisms of sensory (de) coupling during sleep. Curr. Opin. Phys. 15, 47–59 (2020). https://doi.org/10.1016/j.cophys.2019.12.002

    Article  Google Scholar 

  22. A. Destexhe, S.W. Hughes, M. Rudolph, V. Crunelli, Are corticothalamic “up” states fragments of wakefulness? Trends Neurosci. 30(7), 334–342 (2007). https://doi.org/10.1016/j.tins.2007.04.006

    Article  Google Scholar 

  23. J. Feldman, The neural binding problem(s). Cogn. Neurodyn. 7(1), 1–11 (2013). https://doi.org/10.1007/s11571-012-9219-8

    Article  Google Scholar 

  24. R. Jerath, C. Beveridge, Multimodal integration and phenomenal spatiotemporal binding: a perspective from the default space theory. Front. Integr. Neurosci. 5(13), 2 (2019). https://doi.org/10.3389/fnint.2019.00002

    Article  Google Scholar 

  25. A.P. Yonelinas, C. Ranganath, A.D. Ekstrom, B.J. Wiltgen, A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat. Rev. Neurosci. 20(6), 364–375 (2019)

    Article  Google Scholar 

  26. V.B. Dorokhov, V.V. Dementienko, L.G. Koreneva, A.G. Markov, V.M. Shakhnorovich, The electrodermal indices of the subjective perception of performance errors during drowsy changes in consciousness. Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova 50(2), 206–218 (2000)

    Google Scholar 

  27. P. Tassi, A. Bonnefond, O. Engasser et al., EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation. Physiol. Behav. 87(1), 177–184 (2006). https://doi.org/10.1016/j.physbeh.2005.09.017

    Article  Google Scholar 

  28. R. Vallat, D. Meunier, A. Nicolas, P. Ruby, Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures. Neuroimage 184, 266–278 (2019). https://doi.org/10.1016/j.neuroimage.2018.09.033

    Article  Google Scholar 

  29. V. Dorokhov, S. Gruzdeva, O. Tkachenko, E. Cheremushkin, N. Petrenko, Experimental model of consciousness in the sleep-wake paradigm: determining consciousness activation using behavioral and Electromyographic indicators. Proc. Comput. Sci. 169, 840–844 (2020). https://doi.org/10.1007/978-3-030-71637-0_49

    Article  Google Scholar 

  30. I.M. Colrain, The K-complex: a 7-decade history. Sleep 28(2), 255–273 (2005). https://doi.org/10.1093/sleep/28.2.255

    Article  Google Scholar 

  31. I. Duman, I.S. Ehmann, A.R. Gonsalves, Z. Gültekin, J. Van den Berckt, C. van Leeuwen, The no-report paradigm: a revolution in consciousness research? Front. Hum. Neurosci. 11(16), 861517 (2022). https://doi.org/10.3389/fnhum.2022.861517

    Article  Google Scholar 

  32. N. Tsuchiya, M. Wilke, S. Frässle, V.A.F. Lamme, No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19(12), 757–770 (2015). https://doi.org/10.1016/j.tics.2015.10.002

    Article  Google Scholar 

  33. E. Tulving, Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002). https://doi.org/10.1146/annurev.psych.53.100901.135114

    Article  ADS  Google Scholar 

  34. N.J. Cohen, H. Eichenbaum, Memory, amnesia, and the hippocampal system (MIT press, Cambridge, 1993)

    Google Scholar 

  35. K. Henke, A model for memory systems based on processing modes rather than consciousness. Nat. Rev. Neurosci. 11(7), 523–532 (2010). https://doi.org/10.1038/nrn2850

    Article  Google Scholar 

  36. J.D. Gabrieli, Cognitive neuroscience of human memory. Annu. Rev. Psychol. 49, 87–115 (1998). https://doi.org/10.1146/annurev.psych.49.1.87

    Article  Google Scholar 

  37. M. Moscovitch, The hippocampus as a “stupid,” domain-specific module: Implications for theories of recent and remote memory, and of imagination. Can. J. Exp. Psychol. 62(1), 62–79 (2008). https://doi.org/10.1037/1196-1961.62.1.62

    Article  Google Scholar 

  38. S.B. Duss, T.P. Reber, J. Hänggi, S. Schwab, R. Wiest, R.M. Müri, P. Brugger, K. Gutbrod, K. Henke, Unconscious relational encoding depends on hippocampus. Brain 137(Pt 12), 3355–3370 (2014). https://doi.org/10.1093/brain/awu270

    Article  Google Scholar 

  39. T.P. Reber, K. Henke, Integrating unseen events over time. Conscious. Cogn. 21(2), 953–960 (2012). https://doi.org/10.1016/j.concog.2012.02.013

    Article  Google Scholar 

  40. L. Pacozzi, L. Knüsel, S. Ruch, K. Henke, Inverse forgetting in unconscious episodic memory. Sci. Rep. 12(1), 20595 (2022). https://doi.org/10.1038/s41598-022-25100-w

    Article  ADS  Google Scholar 

  41. I. Lerner, P.K. Pilly, A.A. Moustafa, Editorial: mechanisms contributing to sleep-dependent memory generalization. Front. Neurosci. 20(16), 1106577 (2022). https://doi.org/10.3389/fnins.2022.1106577

    Article  Google Scholar 

  42. S.A. Hall, D.C. Rubin, A. Miles, S.W. Davis, E.A. Wing, R. Cabeza, D. Berntsen, The neural basis of involuntary episodic memories. J. Cogn. Neurosci. 26(10), 2385–2399 (2014). https://doi.org/10.1162/jocn_a_00633

    Article  Google Scholar 

  43. E. van der Helm, N. Gujar, M. Nishida, M.P. Walker, Sleep-dependent facilitation of episodic memory details. PLoS ONE 6(11), e27421 (2011). https://doi.org/10.1371/journal.pone.002742

    Article  ADS  Google Scholar 

  44. L. Peter-Derex, M. Magnin, H. Bastuji, Heterogeneity of arousals in human sleep: a stereo-electroencephalographic study. Neuroimage 123, 229–244 (2015). https://doi.org/10.1016/j.neuroimage.2015.07.057

    Article  Google Scholar 

  45. P. Ruby, M. Eskinazi, R. Bouet, S. Rheims, L. Peter-Derex, Dynamics of hippocampus and orbitofrontal cortex activity during arousing reactions from sleep: an intracranial electroencephalographic study. Hum. Brain Mapp. 42(16), 5188–5203 (2021). https://doi.org/10.1002/hbm.25609

    Article  Google Scholar 

  46. U. Voss, Change in EEG pre and post awakening. Int. Rev. Neuribiol. 93, 23–55 (2010). https://doi.org/10.1016/S0074-7742(10)93002-X

    Article  Google Scholar 

  47. J.M. Windt, How deep is the rift between conscious states in sleep and wakefulness? Spontaneous experience over the sleep-wake cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376(1817), 20190696 (2021). https://doi.org/10.1098/rstb.2019.0696

    Article  Google Scholar 

Download references

Funding

This study was funded by Russian Science Foundation (Grant #22–28-01769).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization VBD; funding acquisition VBD and ONT; data curation VBD and ONT; resources VBD, AOT, GNT, EOG and NVL; supervision VBD; software ONT and VBD; investigation VBD, and ONT; methodology VBD, and ONT; sleep scoring AOT, GNT and EOG; spectra calculation AOT, GNT and EOG; validation VBD; visualization VBD and ONT; writing—review and editing VBD, ONT, AOT, GNT, EOG and NVL.

Corresponding author

Correspondence to Vladimir B. Dorokhov.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The funders had no role in the design of the study, the collection, analyses, or interpretation of data, the writing of the manuscript, and the decision to publish the results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhov, V.B., Tkachenko, O.N., Taranov, A.O. et al. Episodic memory causes a slow oscillation of EEG, awakening and performance recovery from sleep episodes during monotonous psychomotor test. Eur. Phys. J. Spec. Top. 233, 589–599 (2024). https://doi.org/10.1140/epjs/s11734-023-01075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-01075-1

Navigation