Log in

Electric–magnetic synergism in BaTiO3-magnetic microwire/silicone rubber composites for enhanced microwave and electromagnetic shielding tunability

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Barium titanate (BT) is a well-known electroceramic attractive for microwave applications owing to its exceptional ferroelectric characteristics, elevated dielectric constant, and piezoelectricity. BT is usually blended with conductive/magnetic fillers (mostly 0D and 3D micro/nanostructures) to better tailor its electromagnetic properties based on synergistic effects. However, complex synthesis, filler agglomeration, and high ceramic filler concentration inevitably lead to flexibility degradation, limiting its application in modern electronics. Here, we exploit magnetoelectric coupling effects in which ferroelectricity and ferromagnetism coexist to modulate the shielding properties of BT/silicone rubber composites via incorporating ferromagnetic microwires. The high dielectric constant of BT and electric hysteresis effects contributed to microwave attenuation. At the same time, its piezoelectricity modified the wire’s magnetic anisotropy via interfacial strain. In turn, the microwires promoted magnetic losses mainly by ferromagnetic resonance and magnetic hysteresis while also affecting dipole rotation in BT via wire–wire-dipolar magnetic interaction. The efficient synergism between the fillers resulted in enhanced transmission and shielding tunability, reaching a maximum shielding of 16 dB at 9.5 GHz for composites incorporating 30 wt.% BT and six microwires (0.0126 vol%) compared to 2.26 dB for composites with merely BT. Moreover, benefiting from the elastomer matrix and low filler content, these composites have potential in flexible electronics. At the same time, it also constitutes a platform for designing shielding materials based on ferroelectric/ferromagnetic heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.]

References

  1. A. Iqbal, P. Sambyal, C.M. Koo, Adv. Funct. Mater. 30, 47 (2020)

    Google Scholar 

  2. L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat 1, 413 (2021)

    Article  Google Scholar 

  3. X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020)

    Article  Google Scholar 

  4. N. Joseph, S.K. Singh, R.K. Sirugudu, V.R.K. Murthy, S. Ananthakumar, M.T. Sebastian, Mater. Res. Bull. 48, 1681 (2013)

    Article  Google Scholar 

  5. G.P. Kar, S. Biswas, R. Rohini, S. Bose, J. Mater. Chem. A 3, 7974 (2015)

    Article  Google Scholar 

  6. B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y.W. Harn, Y. Chen, Z. Lin, Chem. Soc. Rev. 48, 1194 (2019)

    Article  Google Scholar 

  7. T. Sada, K. Tsuji, A. Ndayishimiye, Z. Fan, Y. Fujioka, C.A. Randall, J. Appl. Phys. 128, 084103 (2020)

    Article  ADS  Google Scholar 

  8. J. Liu, X. You, N. Chen, G. Du, J. Wuhan Univ. Technol. Mater. Sci. Ed. 34, 1266 (2019)

    Article  Google Scholar 

  9. Q. Yuchang, W. Qinlong, L. Fa, Z. Wancheng, Z. Dongmei, J. Mater. Chem. C 4, 371 (2016)

    Article  Google Scholar 

  10. I. Cacciotti, M. Valentini, M. Raio, F. Nanni, Compos. Struct. 224, 111075 (2019)

    Article  Google Scholar 

  11. J. Wei, S. Zhang, X. Liu, J. Qian, J. Hua, X. Li, Q. Zhuang, J. Mater. Chem. A 3, 8205 (2015)

    Article  Google Scholar 

  12. L. Vovchenko, O. Lozitsky, L. Matzui, V. Oliynyk, V. Zagorodnii, M. Skoryk, Mater. Chem. Phys. 240, 122234 (2020)

    Article  Google Scholar 

  13. L. **, X. Zhao, J. Xu, Y. Luo, D. Chen, G. Chen, RSC Adv. 8, 2065 (2018)

    Article  ADS  Google Scholar 

  14. G. Guan, G. Gao, J. **ang, J. Yang, L. Gong, X. Chen, Y. Zhang, K. Zhang, X. Meng, A.C.S. Appl, Nano Mater. 3, 8424 (2020)

    Google Scholar 

  15. Z. Ma, C. Cao, J. Yuan, Q. Liu, J. Wang, Appl. Surf. Sci. 258, 7556 (2012)

    Article  ADS  Google Scholar 

  16. P. Sardarian, H. Naffakh-Moosavy, S.S.S. Afghahi, J. Magn. Magn. Mater. 441, 257 (2017)

    Article  ADS  Google Scholar 

  17. K. Vaid, A. Chaurasia, D. Rathore, R. Singhal, U.K. Dwivedi, Polym. Compos. 42, 819 (2021)

    Article  Google Scholar 

  18. A. Muzaffar, M.B. Ahamed, K. Deshmukh, M. Faisal, Polym. Test 77, 105925 (2019)

    Article  Google Scholar 

  19. F. Qin, H.X. Peng, Prog. Mater. Sci. 58, 183 (2013)

    Article  Google Scholar 

  20. A. Uddin, D. Estevez, F.X. Qin, Compos. Part A 153, 1 (2022)

    Article  Google Scholar 

  21. M.M. Salem, M.G. Nematov, A. Uddin, L.V. Panina, M.N. Churyukanova, A.T. Marchenko, J. Phys. Conf. Ser. 903, 1 (2017)

    Article  Google Scholar 

  22. A. Uddin, S. A. Evstigneeva, A. Dzhumazoda, M. M. Salem, M. G. Nematov, A. M. Adam, L. V. Panina, and A. T. Morchenko, in J. Phys. Conf. Ser. (2017), pp. 1–5

  23. M.H. Phan, H.X. Peng, Prog. Mater. Sci. 53, 323 (2008)

    Article  Google Scholar 

  24. Y.L. Xu, A. Uddin, D. Estevez, Y. Luo, H.X. Peng, F.X. Qin, Compos. Sci. Technol. 189, 1 (2020)

    Article  Google Scholar 

  25. D. Estevez, F.X. Qin, L. Quan, Y. Luo, X.F. Zheng, H. Wang, H.X. Peng, Carbon N. Y. 132, 486 (2018)

    Article  Google Scholar 

  26. D. Estevez, F. Qin, Y. Luo, L. Quan, Y.W. Mai, L. Panina, H.X. Peng, Compos. Sci. Technol. 171, 206 (2019)

    Article  Google Scholar 

  27. T. Feng, Y. Wang, J. Yang, Y. Li, P. Xu, H. Wang, H.X. Peng, F. Qin, Compos. Sci. Technol. 232, 109869 (2023)

    Article  Google Scholar 

  28. Q. Jiang, Y. Qiao, C. **ang, A. Uddin, L. Wu, and F. Qin, Adv. Compos. Hybrid Mater. 1 (2021)

  29. J. Carbonell, H. García-Miquel, J. Sánchez-Dehesa, Phys. Rev. B Condens. Matter. Mater. Phys. 81, 1 (2010)

    Article  Google Scholar 

  30. V.S. Larin, A.V. Torcunov, A. Zhukov, M. Vazquez, L. Panina, J. Magn. Magn. Mater. 249, 39 (2002)

    Article  ADS  Google Scholar 

  31. A. Uddin, F.X. Qin, D. Estevez, S.D. Jiang, L.V. Panina, H.X. Peng, Compos. Part B Eng. 176, 107190 (2019)

    Article  Google Scholar 

  32. A. Uddin, D. Estevez, F.X. Qin, H.X. Peng, J. Phys. D. Appl. Phys. 53, 1 (2020)

    Article  Google Scholar 

  33. O.M. Hemeda, B.I. Salem, M. Mostafa, Eur. Phys. J. Plus 135, 46 (2020)

    Article  Google Scholar 

  34. A.M.A. Henaish, O.M. Hemeda, A.M. Dorgham, M.A. Hamad, J. Mater. Res. Technol. 9, 15214 (2020)

    Article  Google Scholar 

  35. T.S. Soliman, M.F. Zaki, M.M. Hessien, S.I. Elkalashy, Opt. Mater. (Amst). 111, 110648 (2021)

    Article  Google Scholar 

  36. A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)

    Article  ADS  Google Scholar 

  37. R.B. Marks, J.A. Jargon, J.R. Juroshek, Dig 30, 38 (1996)

    Google Scholar 

  38. A. Uddin, R. Khatoon, D. Estevez, M. Salem, A. Ali, S. Attique, J. Lu, F. Qin, Mater. Today Commun. 31, 1 (2022)

    Google Scholar 

  39. K. Yasui, K. Kato, J. Phys. Chem. C 116, 319 (2012)

    Article  Google Scholar 

  40. Y. Cui, J. Briscoe, S. Dunn, Nat. Commun. 25, 1 (2013)

    Google Scholar 

  41. S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Mater. Sci. Semicond. Process. 51, 42 (2016)

    Article  Google Scholar 

  42. P. Scherrer, Math. Phys 2, 98 (1918)

    Google Scholar 

  43. E. Atkins, Elements of X-Ray Diffraction, 2nd Editio (1978)

  44. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, Appl. Phys. Rev. 041305, 1 (2017)

    Google Scholar 

  45. C. Garcia, A. Zhukov, J. Gonzalez, V. Zhukova, R. Varga, J.J. Del Val, V. Larin, A. Chizhik, J.M. Blanco, J. Appl. Phys. 99, 08F116 (2006)

    Article  Google Scholar 

  46. O.I. Aksenov, A.A. Fuks, A.S. Aronin, J. Alloys Compd. 836, 155472 (2020)

    Article  Google Scholar 

  47. L.V. Panina, M. Ipatov, V. Zhukova, J. Estevez, A. Zhukov, Mater. Res. Soc. Symp. Proc. 1312, 313 (2011)

    Article  Google Scholar 

  48. Y. Luo, F.X. Qin, F. Scarpa, J. Carbonell, M. Ipatov, V. Zhukova, A. Zhukov, J. Gonzalez, L.V. Panina, H.X. Peng, J. Magn. Magn. Mater. 416, 299 (2016)

    Article  ADS  Google Scholar 

  49. L. Sampaio, P. Vargas, D. Altbir, E.H.C. Sinnecker, M. Knobel, J. Magn. Magn. Mater. 249, 60 (2002)

    Article  ADS  Google Scholar 

  50. D. Yong-Jiang, J. Jian-Jun, D. Gang, T. Bin, B. Shao-wei, H. Hua-hui, Trans. Nonferrous Met. Soc. China 17, 1352 (2007)

    Article  Google Scholar 

  51. E.J. Naglich, J. Lee, D. Peroulis, W.J. Chappell, IEEE Trans. Microw. Theory Tech. 58, 3770 (2010)

    Article  ADS  Google Scholar 

  52. F.X. Qin, H.X. Peng, N. Pankratov, M.H. Phan, L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, J. Gonzalez, J. Appl. Phys. 108, 1 (2010)

    Google Scholar 

  53. A. Uddin, F. Qin, D. Estevez, H.-X. Peng, E.P.J. Appl, Metamaterials 10, 1 (2021)

    Google Scholar 

  54. J. Carvell, R. Cheng, P.A. Dowben, Q. Yang, Appl. Phys. Lett. 103, 072902 (2013)

    Article  ADS  Google Scholar 

  55. A. Mardana, M. Bai, A. Baruth, S. Ducharme, S. Adenwalla, Appl. Phys. Lett. 97, 32 (2010)

    Article  Google Scholar 

  56. Y. Guo, Y. Liu, J. Wang, R.L. Withers, H. Chen, L. **, P. Smith, J. Phys. Chem. C 114, 13861 (2010)

    Article  Google Scholar 

  57. Y. Meng, K. Liu, X. Zhang, X. Qiang, X. Lei, J. Chen, C. Li, Z. Yang, L. Liu, Ceram. Int. 47, 33912 (2021)

    Article  Google Scholar 

  58. J. Geng, D. Li, H. Hao, Q. Guo, H. Xu, M. Cao, Z. Yao, H. Liu, Crystals 13, 1 (2023)

    Google Scholar 

  59. Y.J. Zhao, X.F. Zheng, F.X. Qin, D. Estevez, Y. Luo, H. Wang, H.X. Peng, Compos. Part B Eng. 182, 107606 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

D. Estevez acknowledges the support of Zhejiang University Ningbo “Five-in-one” campus Education Development Center (Grant 709003G20220616)

Author information

Authors and Affiliations

Authors

Contributions

DE was contributed to methodology, validation, formal analysis, writing—review and editing. AU was contributed to conceptualization, methodology, validation, formal analysis, investigation, data curation. MS was contributed to conceptualization, methodology, validation, investigation, data curation.

Corresponding author

Correspondence to M. Salem.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estevez, D., Uddin, A. & Salem, M. Electric–magnetic synergism in BaTiO3-magnetic microwire/silicone rubber composites for enhanced microwave and electromagnetic shielding tunability. Eur. Phys. J. Plus 138, 821 (2023). https://doi.org/10.1140/epjp/s13360-023-04451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04451-x

Navigation