Log in

Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrap**, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Abbreviations

\({\varvec{V}}\) :

Fluid velocity \(\left( {{\text{m}}/{\text{s}}} \right)\)

u, v :

Coating fluid velocity in \(\overline{x}\)- and \(\overline{y}\)-axis \(\left( {{\text{m}}/{\text{s}}} \right)\)

∇:

Gradient operator

p :

Pressure (\({\mathrm{Kgs}}^{2}/\mathrm{m}\))

x, y :

Horizontal and vertical dimensions \(\left( {\text{m}} \right)\)

ρ :

Fluid density (\(\mathrm{Kg}/{\mathrm{m}}^{3}\))

R :

Rolls radius (m)

\(\mu \) :

Viscosity coefficient \((\mathrm{Ns}/{\mathrm{ m}}^{2})\)

\({k}^{^{\prime}}\) :

Vortex viscosity coefficient \((\mathrm{Ns}/{\mathrm{ m}}^{2})\)

t :

Transpose

\(j\) :

Microinertia

\({c}_{p}\) :

Specific heat \(\left(\mathrm{J}/{\mathrm{Kg}}{\mathrm{\; K}}\right)\)

\({k}_{f}\) :

Thermal conductivity \(\left(\mathrm{W}/{\mathrm{ m}}{\mathrm{ \;K}}\right)\)

\(\varphi \) :

Microrotation

\(\alpha ,\xi ,\gamma \) :

Spin gradient viscosity coefficients

\(T\) :

Temperature (K)

\(\mathrm{Br}\) :

Brinckman number (1)

\(\mathrm{Gz}\) :

Graetz number (1)

\(\mathrm{Re}\) :

Reynolds number (1)

\({\rm E}\) :

Geometric parameter (1)

\(N\) :

Coupling number (1)

\(l\) :

Characteristic material length (m)

\(\varepsilon \) :

Microrotation parameter (1)

\(\beta \) :

Slip parameter (1)

\(\vartheta \) :

Dimensionless transverse temperature (1)

\({x}_{s}\) :

Separation point (m)

\({2H}_{0}\) :

Nip gap separation (m)

\(h(x)\) :

Variable separation between roll and substrate (m)

\(\uplambda \) :

Coating thickness (m)

\(\tau \) :

Stress tensor (\(\mathrm{N}/{\mathrm{m}}^{2})\)

\(\sigma \) :

Surface tension \((\mathrm{N}/\mathrm{m})\)

P w :

Power input (W)

F :

Force (N)

\({N}_{\mathrm{ca}2}\) :

Capillary number (1)

References

  1. H. Benkreira, M.F. Edwards, W.L. Wilkinson, A semi-empirical model of the forward roll coating flow of Newtonian fluids. Chem. Eng. Sci. 36(2), 423–427 (1981)

    Article  Google Scholar 

  2. F. Balzarotti, M. Rosen, Systematic study of coating systems with two rotating rolls. Lat. Am. Appl. Res. 39(2), 99–104 (2009)

    Google Scholar 

  3. J.H. Taylor, A.C. Zettlemoyer, Hypothesis on the mechanism of ink splitting during printing. Tappi J 12, 749–757 (1958)

    Google Scholar 

  4. J.C. Hintermaier, R.E. White, The splitting of a water film between rotating rolls. Tappi J 48(11), 617–625 (1965)

    Google Scholar 

  5. Y. Greener, S. Middleman, A theory of roll coating of viscous and viscoelastic fluids. Polym. Eng. Sci. 15(1), 1–10 (1975)

    Article  Google Scholar 

  6. S. Middleman, Fundamentals of Polymer Processing (McGrawHill, New York, 1977), p.202

    Google Scholar 

  7. J. Greener, S. Middleman, Theoretical and experimental studies of the fluid dynamics of a two-roll coater. Ind. Eng. Chem. Fundam. 18(1), 35–41 (1979)

    Article  Google Scholar 

  8. H. Benkreira, M.F. Edwards, W.L. Wilkinson, Roll coating of purely viscous liquids. Chem. Eng. Sci. 36(2), 429–434 (1981)

    Article  Google Scholar 

  9. H. Benkreira, M.F. Edwards, W.L. Wilkinson, Roll coating operations. J. Nonnewton. Fluid Mech. 14, 377–389 (1984)

    Article  Google Scholar 

  10. H. Benkreira, R. Patel, M.F. Edwards, W.L. Wilkinson, Classification and analyses of coating flows. J. Nonnewton. Fluid Mech. 54, 437–447 (1994)

    Article  Google Scholar 

  11. D.J. Coyle, C.W. Macosko, L.E. Scriven, Film-splitting flows in forward roll coating. J. Fluid Mech. 171, 183–207 (1986)

    Article  ADS  Google Scholar 

  12. A. Hannachi, E. Mitsoulis, Numerical analysis of multilayer forward roll coating. J. Plast. Film Sheeting 6(3), 170–190 (1990)

    Article  Google Scholar 

  13. S. Sofou, E. Mitsoulis, Roll-over-web coating of pseudoplastic and viscoplastic sheets using the lubrication approximation. J. Plast. Film Sheeting 21(4), 307–333 (2005)

    Article  Google Scholar 

  14. C.H. Chien, J.Y. Jang, Numerical and experimental studies of thin liquid film flow between two forward-rollers. J. Mech. Sci. Technol. 21(11), 1892–1900 (2007)

    Article  Google Scholar 

  15. M. Zahid, M. Zafar, I. Siddique, M.A. Mohammed, M.A. Rana, W.A. Khan, Modeling of an isothermal flow of a magnetohydrodynamic, viscoplastic fluid during forward roll coating process. Alex. Eng. J. 60(6), 5591–5602 (2021)

    Article  Google Scholar 

  16. H. Shahzad, X. Wang, M.B. Hafeez, Z. Shah, A.M. Alshehri, Study of slip effects in reverse roll coating process using non-isothermal couple stress fluid. Coatings 11(10), 1249 (2021)

    Article  Google Scholar 

  17. S. Khaliq, Z. Abbas, A theoretical analysis of roll-over-web coating assessment of viscous nanofluid containing Cu-water nanoparticles. J. Plast. Film Sheeting 36(1), 55–75 (2020)

    Article  Google Scholar 

  18. S. Khaliq, Z. Abbas, Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory. J. Polym. Eng. 41(8), 705–716 (2021)

    Article  Google Scholar 

  19. A. Hanif, Z. Abbas, S. Khaliq, Rheological impact of Sutterby fluid in isothermal forward roll coating process: a theoretical study. J. Plast. Film Sheeting 39, 115–133 (2022)

    Article  Google Scholar 

  20. M. Zahid, M. Zafar, M.A. Rana, M.T.A. Rana, M.S. Lodhi, Numerical analysis of the forward roll coating of a rabinowitsch fluid. J. Plast. Film Sheeting 36, 191–208 (2020)

    Article  Google Scholar 

  21. F. Ali, Y. Hou, M. Zahid, M.A. Rana, Mathematical analysis of pseudoplastic polymers during reverse roll-coating. Polymers 12(10), 2285 (2020)

    Article  Google Scholar 

  22. M. Zahid, I. Siddique, S. Saleem, A. Al-Zubaidi, M.A. Rana, M. Zafar, Forward roll coating of a Williamson’s material onto a moving web: a theoretical study. Math. Probl. Eng. 2021, 1–11 (2021)

    Article  Google Scholar 

  23. Z. Abbas, A. Hanif, S. Khaliq, Scrutinization of coating thickness of Sutterby fluid during isothermal blade coating using lubrication theory: the case of plane coater and exponential coater. Phys. Scr. 97, 115202 (2022)

    Article  ADS  Google Scholar 

  24. S. Khaliq, Z. Abbas, Analysis of calendering process of non-isothermal flow of non-Newtonian fluid: a perturbative and numerical study. J. Plast. Film Sheeting 37(3), 338–366 (2021)

    Article  Google Scholar 

  25. A.C. Eringen, Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    Google Scholar 

  26. A. Kucaba-Piętal, Modeling of the lubrication mechanism in human joints using micropolar fluid theory. J. Theor. Appl. Mech. 37(3), 593–606 (1999)

    MATH  Google Scholar 

  27. Z. Iqbal, R. Mehmood, E. Azhar, Z. Mehmood, Impact of inclined magnetic field on micropolar Casson fluid using Keller box algorithm. Eur. Phys. J. Plus 132(4), 1–13 (2017)

    Article  Google Scholar 

  28. H.M. Atif, N. Ali, M.A. Javed, F. Abbas, Theoretical analysis of roll-over-web coating of a micropolar fluid under lubrication approximation theory. J. Plast. Film Sheeting 34(4), 418–438 (2018)

    Article  Google Scholar 

  29. N. Ali, H.M. Atif, M.A. Javed, M. Sajid, A mathematical model of the calendered exiting thickness of micropolar sheet. Polym. Eng. Sci. 58(3), 327–334 (2018)

    Article  Google Scholar 

  30. M. Kanwal, X. Wang, H. Shahzad, Y. Chen, M. Sajid, Mathematical modeling of micropolar fluid in blade coating using lubrication theory. SN Appl. Sci. 2(4), 1–8 (2020)

    Article  Google Scholar 

  31. Z. Abbas, S. Khaliq, Roll-over-web coating analysis of micropolar-Casson fluid: a theoretical investigation. J. Polym. Eng. 41(4), 289–298 (2021)

    Article  Google Scholar 

  32. Z. Abbas, S. Khaliq, Numerical study of non-isothermal analysis of exiting sheet thickness in the calendering of micropolar-Casson fluid. J. Plast. Film Sheeting 38(1), 105–129 (2022)

    Article  Google Scholar 

  33. P. Vijayalakshmi, R. Sivaraj, Heat transfer analysis on micropolar alumina–silica–water nanofluid flow in an inclined square cavity with inclined magnetic field and radiation effect. J. Therm. Anal. Calorim. (2022). https://doi.org/10.1007/s10973-022-11758-x

    Article  Google Scholar 

  34. B.R. Kumar, M.S. Kumar, N. Sandeep, R. Sivaraj, Cross diffusion effects on heat and mass transfer micropolar fluid flow past a stretching surface. Defect Diffus. Forum 388, 265–280 (2018)

    Article  Google Scholar 

  35. M. Amjad, I. Zehra, S. Nadeem, N. Abbas, Thermal analysis of Casson micropolar nanofluid flow over a permeable curved stretching surface under the stagnation region. J. Therm. Anal. Calorim. 143(3), 2485–2497 (2021)

    Article  Google Scholar 

  36. M.M. Khader, R.P. Sharma, Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: Implementing fourth order predictor—corrector FDM. Math. Comput. Simul. 181, 333–350 (2021)

    Article  MATH  Google Scholar 

  37. F. Mabood, M.D. Shamshuddin, S.R. Mishra, Characteristics of thermophoresis and Brownian motion on radiative reactive micropolar fluid flow towards continuously moving flat plate: HAM solution. Math. Comput. Simul. 191, 187–202 (2022)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khaliq.

Appendix I

Appendix I

$${z}_{1}=3\mathrm{Br}\left(h-y\right){\varepsilon }^{2}\left(\begin{array}{c}64{A}_{2}{d}_{3}N\frac{dp}{dx}+2{{A}_{1}}^{5}{{a}_{3}}^{2}{{d}_{2}}^{2}h\left(1+N\right)y+{a}^{4}(-4{a}_{3}{{d}_{2}}^{2}hNy\\ +{{a}_{3}}^{2}(1+N)({{d}_{2}}^{2}-2{{d}_{3}}^{2}hy)-2{{d}_{2}}^{2}hy\varepsilon )\end{array}\right),$$
(56)
$${z}_{2}={{A}_{1}}^{2}\mathrm{Br}\left(h-y\right)\varepsilon \left(\begin{array}{c}8{d}_{1}h{N}^{2}y(3{a}_{2}{d}_{1}+2{a}_{1}\frac{\mathrm{d}p}{\mathrm{d}x}\left(h+y\right)+\\ +2N(-3{{d}_{2}}^{2}+6{{d}_{3}}^{2}hy+4{a}_{1}{A}_{2}h{\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)}^{2}y({h}^{2}+hy+{y}^{2})+\\ 4{a}_{2}{d}_{1}(-6{d}_{2}+{A}_{2}h\frac{\mathrm{d}p}{\mathrm{d}x}y(h+y)))\varepsilon -3{{d}_{3}}^{2}{\varepsilon }^{2}+\\ 6{a}_{3}(-8{d}_{1}{d}_{2}{N}^{2}+{d}_{3}({d}_{3}N-32{a}_{1}(1+N)\frac{\mathrm{d}p}{\mathrm{d}x})\varepsilon \end{array}\right),$$
(57)
$${z}_{3}=24y+\mathrm{Br}\left(h-y\right)\left(\begin{array}{c}3{{a}_{3}}^{2}{{d}_{3}}^{2}\left(1+N\right)+12{{a}_{2}}^{2}{{d}_{1}}^{2}h\left(1+N\right)y-\\ 6{a}_{3}N\left({{d}_{2}}^{2}-2{{d}_{3}}^{2}hy\right)-16{a}_{2}{d}_{1}\left(1+N\right)\\ (3{a}_{3}{d}_{2}-{a}_{1}h\frac{\mathrm{d}p}{\mathrm{d}x}y(h+y))+4hy(3{{d}_{2}}^{2}N+2{{a}_{1}}^{2}\\ (1+N){\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)}^{2}({h}^{2}+hy+{y}^{2}))+3({{d}_{2}}^{2}+2{{d}_{3}}^{2}hy)\varepsilon \end{array}\right),$$
(58)
$${z}_{4}=\left(h-y\right)\left(\begin{array}{c}12{{d}_{1}}^{2}h{N}^{3}y+8{d}_{1}{N}^{2}\left(-6{d}_{2}+{A}_{2}h\frac{dp}{dx}y\left(h+y\right)\right)\varepsilon +\\ {\varepsilon }^{2}(3{{d}_{3}}^{2}N+2{{A}_{2}}^{2}h{\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)}^{2}y(N({h}^{2}+hy+{y}^{2})+3\varepsilon )\\ -24{d}_{3}\frac{\mathrm{d}p}{\mathrm{d}x}(4{a}_{1}N+2{a}_{3}{A}_{2}N+{A}_{2}\varepsilon ))\end{array}\right),$$
(59)
$${z}_{5}=-16y\left(\begin{array}{c}{A}_{1}(2-{A}_{1}{a}_{3}){d}_{1}{d}_{2}{N}^{2}+({{A}_{1}}^{2}{a}_{2}{d}_{1}{d}_{2}\left(-N+{A}_{1}{a}_{3}\left(1+N\right)\right)+\\ (-2{d}_{3}+{A}_{1}{d}_{2}h)(2{A}_{2}N-{A}_{1}(2{a}_{1}+{a}_{3}{A}_{2})N+2{{A}_{1}}^{2}{a}_{1}{a}_{3}(1+N))\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)\varepsilon \\ +{A}_{1}{A}_{2}{d}_{3}\frac{\mathrm{d}p}{\mathrm{d}x}{\varepsilon }^{2})cosh[\sqrt{{A}_{1}}h]\end{array}\right),$$
(60)
$${z}_{6}=y\varepsilon \left({A}_{1}{{d}_{2}}^{2}+{{d}_{3}}^{2}\right)\left(2N+{A}_{1}\left(-2{a}_{3}N+{A}_{1}{{a}_{3}}^{2}\left(1+N\right)+\varepsilon \right)\right)\mathrm{cosh}\left[2\sqrt{{A}_{1}}h\right],$$
(61)
$${z}_{7}=\left(\begin{array}{c}{A}_{1}\left(2-{A}_{1}{a}_{3}\right){d}_{1}{d}_{2}{N}^{2}+(-4{A}_{2}{d}_{3}N\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)+2{A}_{1}N\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)\left(2{a}_{1}{d}_{3}+{a}_{3}{A}_{2}{d}_{3}+{A}_{2}{d}_{2}y\right)\\ {{+A}_{1}}^{3}{a}_{3}{d}_{2}(1+N)({a}_{2}{d}_{1}+2{a}_{1}\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)y)-{{A}_{1}}^{2}({a}_{2}{d}_{1}{d}_{2}N+4{a}_{1}{a}_{3}{d}_{3}(1+N)\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)\\ +(2{a}_{1}+{a}_{3}{A}_{2}){d}_{2}N\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)y))\varepsilon +{A}_{1}{A}_{2}{d}_{3}\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right){\varepsilon }^{2})cosh[\sqrt{{A}_{1}}y]\end{array}\right),$$
(62)
$${z}_{8}=h\varepsilon \left({A}_{1}{{d}_{2}}^{2}+{{d}_{3}}^{2}\right)\left(2N+{A}_{1}\left(-2{a}_{3}N+{A}_{1}{{a}_{3}}^{2}\left(1+N\right)+\varepsilon \right)\right)\mathrm{cosh}\left[2\sqrt{{A}_{1}}h\right],$$
(63)
$${z}_{9}=8\left(\begin{array}{c}\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)\varepsilon \left(\left(2{d}_{2}-{d}_{3}h\right)\left(2{A}_{2}N-{A}_{1}\left(2{a}_{1}+{a}_{3}{A}_{2}\right)N+2{{A}_{1}}^{2}{a}_{1}{a}_{3}\left(1+N\right)\right)\right.\\ \left.-{A}_{1}{A}_{2}{d}_{2}\varepsilon \right)+{d}_{1}{d}_{3}((-2+{A}_{1}{a}_{3}){N}^{2}+{A}_{1}{a}_{2}(N-{A}_{1}{a}_{3}(1+N))\varepsilon ))sinh[\sqrt{{A}_{1}}h]\\ +{A}_{1}{d}_{2}{d}_{3}\varepsilon (2N+{A}_{1}(-2{a}_{3}N+{A}_{1}{{a}_{3}}^{2}(1+N)+\varepsilon ))sinh[2\sqrt{{A}_{1}}h]\end{array}\right),$$
(64)
$${z}_{10}=\left(\begin{array}{c}\left(\frac{\mathrm{d}p}{\mathrm{d}x}\right)\varepsilon ((-2{A}_{2}N+{A}_{1}(2{a}_{1}+{a}_{3}{A}_{2})N-2{{A}_{1}}^{2}{a}_{1}{a}_{3}(1+N))(2{d}_{2}-{d}_{3}y)+{A}_{1}{A}_{2}{d}_{2}\varepsilon \\ +{d}_{1}{d}_{3}((2-{A}_{1}{a}_{3}){N}^{2}+{A}_{1}a2(-N+{A}_{1}{a}_{3}(1+N))\varepsilon ))sinh[\sqrt{{A}_{1}}y]\\ -2{{A}_{1}}^{3/2}{d}_{2}{d}_{3}h\varepsilon (2N+{A}_{1}(-2{a}_{3}N+{A}_{1}{{a}_{3}}^{2}(1+N)+\varepsilon ))sinh[2\sqrt{{A}_{1}}y]\end{array}\right).$$
(65)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Hanif, A. & Khaliq, S. Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid. Eur. Phys. J. Plus 138, 105 (2023). https://doi.org/10.1140/epjp/s13360-023-03706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03706-x

Navigation