Log in

Theoretical study of excitation energies and radiative data with identification of SXR and EUV spectral lines for Li-like ions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The fully relativistic multi-configuration Dirac–Fock (MCDF) method is employed to compute the excitation energies and radiative rates for Li-like ions (57 ≤ Z ≤ 92). Relativistic corrections quantum electrodynamics (QED) and Breit corrections have been included in the calculations. We have presented the lowest 24 fine structural level energies and radiative data for electric dipole (E1) transitions among these levels. We have compared our results with results compiled by NIST as well as with other results available in the literature. We have also performed analogous calculations for energy levels by using flexible atomic code (FAC), to assess the accuracy of our results. Further, we have identified soft x-ray (SXR) and extreme ultra-violet (EUV) spectral lines within listed E1 transitions. We strongly believe that our presented data will be helpful in future works related to high Z lithium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability statement

All data generated or analyzed during this study are included in this published article and in supplementary files.

References

  1. K.P. Dere, E. Landi, P.R. Young, G. DelZanna, Astrophys. J. Suppl Ser. 134, 331 (2001)

    Article  ADS  Google Scholar 

  2. G.A. Doschek, U. Feldman, J. Phys. B: At. Mol. Opt. Phys. 43, 232001 (2010)

    Article  ADS  Google Scholar 

  3. F.B. Rosmej et al., Control Fusion 41, 191 (1999)

    Article  Google Scholar 

  4. S. Fujioka, H. Takabe et al., Nature Phys. 5, 821 (2009)

    Article  ADS  Google Scholar 

  5. J.R. Lemen, J. Sylwester, R.D. Bentley, Adv. Space Res. 6, 245 (1986)

    Article  ADS  Google Scholar 

  6. J. Schweppe, A. Belkacem et al., Phys. Rev. Lett. 66, 1434 (1991)

    Article  ADS  Google Scholar 

  7. I. Khatri, A. Goyal, S. Aggarwal, A.K. Singh, M. Mohan, Radiat. Phys. Chem. 123, 46 (2016)

    Article  ADS  Google Scholar 

  8. https://www.iaea.org/newscenter/news/new-crp-atomic-data-for-vapour-shielding-in-fusion-devices-f43024

  9. W. Ge, E. Jakobsson, Front. Oncol. 9, 296 (2019)

    Article  Google Scholar 

  10. V.A. Yerokhin, A. Surzhykov, J. Phys. Chem. Ref. Data 47, 023105 (2018)

    Article  ADS  Google Scholar 

  11. V. A. Yerokhin, A. Surzhykov, A. Muller, Phys. Rev. A 96 (2017) 042505 Erratum 96 (2017) 069901.

  12. I.P. Grant et al., Comput. Phys. Commun. 21, 207 (1980)

    Article  ADS  Google Scholar 

  13. M.F. Gu, Can. J. Phys. 86, 675 (2008)

    Article  ADS  Google Scholar 

  14. S.A. Blundell, Phys. Rev. A 47, 1790 (1993)

    Article  ADS  Google Scholar 

  15. I. Lindgren, H. Persson, S. Salomonson, A. Ynnerman, Phys. Rev. A 47, R4555 (1993)

    Article  ADS  Google Scholar 

  16. M.H. Chen, K.T. Cheng, W.R. Johnson, J. Sapirstein, Phys. Rev. A 52, 266 (1995)

    Article  ADS  Google Scholar 

  17. V.A. Yerokhin, A.N. Artemyev, T. Beier, G. Plunien, V.M. Shabaev, G. Soff, Phys. Rev. A 60, 3522 (1999)

    Article  ADS  Google Scholar 

  18. A.N. Artemyev, T. Beier, G. Plunien, V.M. Shabaev, G. Soff, V.A. Yerokhin, Phys. Rev. A 60, 45 (1999)

    Article  ADS  Google Scholar 

  19. V.A. Yerokhin, A.N. Artemyev, V.M. Shabaev, M.M. Sysak, O.M. Zherebtsov, G. Soff, Phys. Rev. Lett. 85, 4699 (2000)

    Article  ADS  Google Scholar 

  20. O.M. Zherebtsov, V.M. Shabaev, V.A. Yerokhin, Phys. Lett. A 277, 227 (2000)

    Article  ADS  Google Scholar 

  21. V.A. Yerokhin, A.N. Artemyev, V.M. Shabaev, M.M. Sysak, O.M. Zherebtsov, G. Soff, Phys. Rev. A 64, 032109 (2001)

    Article  ADS  Google Scholar 

  22. J. Sapirstein, K.T. Cheng, Phys. Rev. A 64, 022502 (2001)

    Article  ADS  Google Scholar 

  23. O.Y. Andreev, L.N. Labzowsky, G. Plunien, G. Soff, Phys. Rev. A 64, 042513 (2001)

    Article  ADS  Google Scholar 

  24. A.N. Artemyev, V.M. Shabaev, M.M. Sysak, V.A. Yerokhin, T. Beier, G. Plunien, G. Soff, Phys. Rev. A 67, 062506 (2003)

    Article  ADS  Google Scholar 

  25. V.A. Yerokhin, P. Indelicato, V.M. Shabaev, Phys. Rev. Lett. 97, 253004 (2006)

    Article  ADS  Google Scholar 

  26. V.A. Yerokhin, A.N. Artemyev, V.M. Shabaev, Phys. Rev. A 75, 062501 (2007)

    Article  ADS  Google Scholar 

  27. Y.S. Kozhedub, D.A. Glazov, A.N. Artemyev, N.S. Oreshkina, V.M. Shabaev, I.I. Tupitsyn, A.V. Volotka, G. Plunien, Phys. Rev. A 76, 012511 (2007)

    Article  ADS  Google Scholar 

  28. F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996)

    Article  ADS  Google Scholar 

  29. P. Jönsson, X. He, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 177, 597 (2007)

    Article  ADS  Google Scholar 

  30. P. Indelicato, J.P. Desclaux, Phys. Rev. A 42, 5139 (1990)

    Article  ADS  Google Scholar 

  31. J. Clementson, P. Beiersdorfer, G.V. Brown, M.F. Gu, H. Lundberg, Y. Podpaly, E. Träbert, Can. J. Phys. 89, 571–580 (2011)

    Article  ADS  Google Scholar 

  32. J. Sapirstein, K.T. Cheng, Phys. Rev. A 83, 012504 (2011)

    Article  ADS  Google Scholar 

  33. G.C. Rodrigues, P. Indelicato, J.P. Santos, P. Patte, F. Parente, At. Data Nucl. Data Tables 86, 117 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Dr. Pradumn Kumar is thankful to Principal, Hindu College, and Dr. Arun Goyal is thankful to Principal, Shyamlal College, for providing facilities for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 110 KB)

Supplementary file2 (DOCX 22 KB)

Supplementary file3 (DOCX 22 KB)

Supplementary file4 (DOCX 22 KB)

Supplementary file5 (DOCX 22 KB)

Supplementary file6 (DOCX 22 KB)

Supplementary file7 (DOCX 22 KB)

Supplementary file8 (DOCX 22 KB)

Supplementary file9 (DOCX 22 KB)

Supplementary file10 (DOCX 22 KB)

Supplementary file11 (DOCX 22 KB)

Supplementary file12 (DOCX 22 KB)

Supplementary file13 (DOCX 22 KB)

Supplementary file14 (DOCX 22 KB)

Supplementary file15 (DOCX 22 KB)

Supplementary file16 (DOCX 22 KB)

Supplementary file17 (DOCX 22 KB)

Supplementary file18 (DOCX 22 KB)

Supplementary file19 (DOCX 22 KB)

Supplementary file20 (DOCX 22 KB)

Supplementary file21 (DOCX 22 KB)

Supplementary file22 (DOCX 22 KB)

Supplementary file23 (DOCX 22 KB)

Supplementary file24 (DOCX 22 KB)

Supplementary file25 (DOCX 22 KB)

Supplementary file26 (DOCX 22 KB)

Supplementary file27 (DOCX 22 KB)

Supplementary file28 (DOCX 22 KB)

Supplementary file29 (DOCX 22 KB)

Supplementary file30 (DOCX 22 KB)

Supplementary file31 (DOCX 22 KB)

Supplementary file32 (DOCX 22 KB)

Supplementary file33 (DOCX 22 KB)

Supplementary file34 (DOCX 22 KB)

Supplementary file35 (DOCX 22 KB)

Supplementary file36 (DOCX 22 KB)

Supplementary file37 (DOCX 22 KB)

Supplementary file38 (DOCX 22 KB)

Supplementary file39 (DOCX 22 KB)

Supplementary file40 (DOCX 22 KB)

Supplementary file41 (DOCX 22 KB)

Supplementary file42 (PDF 515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Goyal, A. & Mohan, M. Theoretical study of excitation energies and radiative data with identification of SXR and EUV spectral lines for Li-like ions. Eur. Phys. J. Plus 137, 1253 (2022). https://doi.org/10.1140/epjp/s13360-022-03479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03479-9

Navigation