Log in

The effect of alkali activation on the durability, mechanical properties, and characterization of alccofine-modified air lime mortar

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The modification of lime mortar to conserve architectural heritage buildings is being widely practiced today. The effect of the mix ratio (B/Ag) on the fresh and hardened state properties of air lime–alccofine mortar using analytical techniques was investigated in this research. Air lime was mixed with alccofine in the ratios of 100:0, 75:25, 50:50, and alkali activation solutions in proportions of 2.5%, 2.75%, and 3% were added to the mix. The XRD, FTIR, and SEM analyses were used to investigate the mineralogical properties of the modified mortar. Thermogravimetric analysis confirms the XRD and FTIR results, which point to strength gain of the mix. TGA confirms the outcome of the XRD analysis and indicated weight loss at around 800 °C, showing decomposition of calcite and release of CO2. SEM images validated the presence of calcite and hematite. It was observed that the compressive strength values for the mortar modified with 25% alccofine with alkali activation (2.75%) were 1.76 MPa at 7 days and 2.17 MPa at 28 days and flexural strength values were 0.64 MPa at 7 days and 0.74 MPa at 28 days. When 25% alccofine and 2.75% of activated alkali solution are introduced, the compressive and flexural strengths of the resulting mortar steadily improved and reached the maximum of 1.81 MPa and 0.56 MPa, respectively. The analysis in our study shows that the conventional lime mortar mix made up of air lime and alccofine prepared by alkali activation is a sustainable material in the fresh and hardened states. Therefore, our findings assist in preparing a viable mortar for the restoration of historic masonry structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. A.L. Velosa, J. Coronado, M.R. Veiga, F. Rocha, Characterisation of roman mortars from Conimbriga to their repair. Mater. Charact. 58, 1208–1216 (2007). https://doi.org/10.1016/j.matchar.2007.06.017

    Article  Google Scholar 

  2. A. Moropoulou, A. Bakolas, P. Moundoulas, E. Aggelakopoulou, Reverse engineering: a proper methodology for compatible restoration mortars, Conference: International RILEM Workshop on Repairs Mortars for Historic Masonry, 81–107, (2009)

  3. P. Faria, F. Henriques, V. Rato, Comparative evaluation of aerial lime mortars for architectural conservation. Cult. Herit. 9(3), 338–346 (2008). https://doi.org/10.1016/j.culher.2008.03.003

    Article  Google Scholar 

  4. G. Margalha, R. Veiga, A. Santos Silva, J. Brito, Traditional methods of mortar preparation: the hot lime mix method. Cem. Concr. Compos. 33(8), 796–804 (2011). https://doi.org/10.1016/j.cemconcomp.2011.05.008

    Article  Google Scholar 

  5. R.M. Lawrence, T.J. Mays, P. Walker, D. D’Ayala, Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim Acta 444(2), 179–189 (2006). https://doi.org/10.1016/j.tca.2006.03.002

    Article  Google Scholar 

  6. B.B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review. Cement Concr. Compos. 23, 441–454 (2001). https://doi.org/10.1016/S0958-9465(00)00092-5

    Article  Google Scholar 

  7. R. García, R.V. de la Villa, O. Rodríguez, M. Frías, Study of hydrated phases present in calcined paper sludge (metakaolinite)/saturated CaO dissolution system cured at 40 C and 28 days of reaction. Mater. Sci. Eng. A 527(16–17), 3936–3941 (2010). https://doi.org/10.1016/j.msea.2010.02.075

    Article  Google Scholar 

  8. M. Said-Mansour, E.H. Kadri, S. Kenai, M. Ghrici, R. Bennaceur, Influence of calcined kaolin on mortar properties. Constr. Build. Mater. 25(5), 2275–2282 (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.017

    Article  Google Scholar 

  9. M. Frías Rojas, Study of hydrated phases present in a MK-lime system cured at 60 °C and 60 months of reaction. Cem. Concr. Res. 36(5), 827–831 (2006). https://doi.org/10.1016/j.cemconres.2006.01.001

    Article  Google Scholar 

  10. A. Moropoulou, A. Bakolas, E. Aggelakopoulou, Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta 420(1), 135–140 (2004). https://doi.org/10.1016/j.tca.2003.11.059

    Article  Google Scholar 

  11. A. Sepulcre-Aguilar, F. Hernández-Olivares, Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem. Concr. Res. 40(1), 66–76 (2010). https://doi.org/10.1016/j.cemconres.2009.08.028

    Article  Google Scholar 

  12. P. Faria-Rodrigues, Resistance to salts of lime and pozzolan mortars, RILEM proceedings pro 067-Int, RILEM workshop on repair mortars for historic masonry, 99–110 (2009)

  13. H. Rua, "The ten books of architecture by Vitrúvius." Lisboa, IST (1998)

  14. F.L. Nicolas, Fray Lorenzo de san Nicolas. Precisiones en torno a su biografía y obra escrita*. Anales de historia del arte.14, (1593–1679) (2004)

  15. S. Serlio, "Tercero y cuarto libro de arquitectura." (1990)

  16. R.M. Lawrence, T.J. Mays, S.P. Rigby, P. Walker, D. D’Ayala, Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cem. Concr. Res. 37(7), 1059–1069 (2007). https://doi.org/10.1016/j.cemconres.2007.04.011

    Article  Google Scholar 

  17. G. Cultrone, E. Sebastián, M. Ortega Huertas, Forced and natural carbonation of Lime-based mortars with and without additives: mineralogical and textural changes. Cem. Concr. Res. 35(12), 2278–2289 (2005). https://doi.org/10.1016/j.cemconres.2004.12.012

    Article  Google Scholar 

  18. I. Papayianni, Criteria and methodology for manufacturing compatible repair mortars and bricks. Compat. Mater. Prot. Eur. Cult. Herit. PACT 56, 179–190 (1998)

    Google Scholar 

  19. M. Rosário Veiga, A. Fragata, M.L. Tavares, A.C. Magalhães, N. Ferreira, Inglesinhos convent: compatible renders and other measures to mitigate water capillary rising problems. J. Build. Apprais. 5(2), 1742–8262 (2009)

    Google Scholar 

  20. C.S. Poon, L. Lam, S.C. Kou, Y.L. Wong, R. Wong, Rate of pozzolanic reaction of MK in high-performance cement pastes. Cem. Concr. Res. 31(9), 1301–1306 (2001). https://doi.org/10.1016/S0008-8846(01)00581-6

    Article  Google Scholar 

  21. K.A. Gruber, T. Ramlochan, A. Boddy, R.D. Hooton, M.D. Thomas, Increasing concrete durability with high-reactivity metakaolins. Cem. Concr. Compos. 23(6), 479–484 (2001). https://doi.org/10.1016/S0958-9465(00)00097-4

    Article  Google Scholar 

  22. C. Perlot, P. Rougeau, Intérêt des métakaolins dans les bétons. Monographie du Centre d’Études et de Recherches de l’Industrie du Béton 65, (2007)

  23. R. Siddique, J. Klaus, Influence of metakaolin on the properties of mortar and concrete: a review. Appl. Clay Sci. 43(3–4), 392–400 (2009). https://doi.org/10.1016/j.clay.2008.11.007

    Article  Google Scholar 

  24. G. Batis, P. Pantazopoulou, S. Tsivilis, E. Badogiannis, The effect of metakaolin on the corrosion behaviour of cement mortars. Cem. Concr. Compos. 27(1), 125–130 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.041

    Article  Google Scholar 

  25. B. Bhardwaj, P. Kumar, Comparative study of geopolymer and alkali activated slag concrete comprising waste foundry sand. Constr. Build. Mater. 209, 555–565 (2019)

    Article  Google Scholar 

  26. W.C. Wang, H.Y. Wang, H.C. Tsai, Study on engineering properties of alkali-activated ladle furnace slag geopolymer. Constr. Build. Mater. 123, 800–805 (2016)

    Article  Google Scholar 

  27. T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, A.G.F. Gibb, T. Thorpe, Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 45, 1221–1232 (2012)

    Article  Google Scholar 

  28. S. Ghahari, L.N. Assi, A. Alsalman, K.E. Alyamaç, Fracture properties evaluation of cellulose nanocrystals cement paste. Materials 13, 2507 (2020)

    Article  ADS  Google Scholar 

  29. F.A. Grandes, V.K. Sakano, A.C.A. Rego, F.A. Cardoso, R.G. Pileggi, Squeeze flow coupled with dynamic pressure map** for the rheological evaluation of cement-based mortars. Cem. Concr. Compos. 92, 18–35 (2018)

    Article  Google Scholar 

  30. J. **e, O. Kayali, Effect of superplasticiser on workability enhancement of class F and class C fly ash-based geopolymers. Constr. Build. Mater. 122, 36–42 (2016)

    Article  Google Scholar 

  31. M.T. Marvila, A.R.G.D. Azevedo, P.R.D. Matos, S.N. Monteiro, C.M.F. Vieira, Rheological and the fresh state properties of alkali-activated mortars by blast furnace slag. Materials 14, 2069 (2021). https://doi.org/10.3390/ma14082069

    Article  ADS  Google Scholar 

  32. M.T. Marvila, A.R.G. de Azevedo, L.B. de Oliveira, G. de Castro Xavier, C.M.F. Vieira, Mechanical, physical and durability properties of activated alkali cement based on blast furnace slag as a function of% Na2O. Case Stud. Constr. Mater. 15, e00723 (2021). https://doi.org/10.1016/j.cscm.2021.e00723

    Article  Google Scholar 

  33. A. Arizzi, G. Cutrone, Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: a mineralogical, textural and physical-mechanical study. Constr. Build. Mater. 31, 135–143 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.069

    Article  Google Scholar 

  34. A. Gameiro, A. Santos Silva, Hydration products of Lime–metakaolin pastes at ambient temperature with ageing. Thermochim Acta 535, 36–41 (2012). https://doi.org/10.1016/j.tca.2012.02.013

    Article  Google Scholar 

  35. A.L. Gameiro, A.S. Silva, M.R. Veiga, A.L. Velosa, Lime–metakaolin hydration products: a microscopy analysis. Mater. Technol. 46(2), 145–148 (2012)

    Google Scholar 

  36. M.T. Marvila, J. Alexandre, A.R.G. de Azevedo et al., Evaluation of the use of marble waste in hydrated lime cement mortar based. J. Mater. Cycles Waste Manag. 21, 1250–1261 (2019). https://doi.org/10.1007/s10163-019-00878-6

    Article  Google Scholar 

  37. M.T. Marvila, J. Alexandre, A.R.G. Azevedo, E.B. Zanelato, G.C. Xavier, S.N. Monteiro, Study on the replacement of the hydrated lime by kaolinitic clay in mortars. Adv. Appl. Ceram. 118(7), 373–380 (2019). https://doi.org/10.1080/17436753.2019.1595266

    Article  Google Scholar 

  38. M.T. Marvila, A.R.G. de Azevedo, J. Alexandre, H. Colorado, M.L. Pereira Antunes, C.M.F. Vieira, Circular economy in cementitious ceramics: replacement of hydrated lime with a stoichiometric balanced combination of clay and marble waste. Int. J. Appl. Ceram. Technol. 18, 192–202 (2020). https://doi.org/10.1111/ijac.13634

    Article  Google Scholar 

  39. M.T. Marvila, A.R.G. Azevedo, S.N. Monteiro, Verification of the application potential of the mathematical models of lyse, abrams and Molinari in mortars based on cement and lime. J. Market. Res. 9(4), 7327–7334 (2020). https://doi.org/10.1016/j.jmrt.2020.04.077

    Article  Google Scholar 

  40. J. Davidovits, Geopolymer Chemistry & Application (Fourth Edition, France: Institut Geopolymere. (2015), ISBN: 9782954453118

  41. H. Paiva, A. Velosa, R. Veiga, V.M. Ferreira, Effect of maturation time on the fresh and hardened properties of an air lime mortar. Cem. Concr. Res. 40, 447–451 (2010)

    Article  Google Scholar 

  42. S. Kotteewaran, R. Ravi, Sustainability development and performance evaluation of natural hydraulic lime mortar for restoration. Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-21019-x

    Article  Google Scholar 

  43. IS: 6932 (Part VII), Methods of tests for building limes—Determination of compressive and transverse strengths, Bureau of Indian Standards, New Delhi, 1973

  44. K.A. Gour, R. Ramadoss, T. Selvaraj, Revam** the traditional air lime mortar using the natural polymer–Areca nut for restoration application. Constr. Build. Mater. 164, 255–264 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.056

    Article  Google Scholar 

  45. Saloma, H. Hanafiah, D.O. Elysandi, D.G. Meykan, Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor, AIP Conference Proceedings 1, 050013, (2017). https://doi.org/10.1063/1.5011552

  46. N.A. Jaya, M.M.A.B. Abdullah, L.Y. Li, A.V. Sandu, K. Hussin, L.Y. Ming, Durability of metakaolin geopolymers with various sodium silicate/sodium hydroxide ratios against seawater exposure. AIP Conf. Proc. 1887, 020063 (2017). https://doi.org/10.1063/1.5003546

    Article  Google Scholar 

  47. IS: 2386 (Part I), Method of test for aggregate and concrete-particle size and shape, Indian standards, New Delhi, India. (1963)

  48. IS: 6932 (Part VIII), Methods of tests for building Limes- Determination of workability, Bureau of Indian Standards, New Delhi. (1973)

  49. BS EN 1015–18, Methods of test for mortar for masonry – Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar, British Standards, (2002)

  50. BS EN 12370, Natural stone test methods—Determination of resistance to salt Crystallization, British Standards (1999)

  51. S. Thirumalai, R. Ravi, S.K. Sekar, M. Nambirajan, Knowing from the past–Ingredients and technology of ancient mortar used in Vadakumnathan temple, Thrissur, Kerala, India. J. Build. Eng. 4, 101–112 (2015). https://doi.org/10.1016/j.jobe.2015.09.004

    Article  Google Scholar 

  52. A. Moropoulou, A. Bakolas, K. Bisbikou, Investigation of the technology of historic mortars. J. Cult. Herit. 1(1), 45–58 (2000). https://doi.org/10.1016/S1296-2074(99)00118-1

    Article  Google Scholar 

  53. T. Selvaraj, R. Ramadoss, Analysis and characterisation of third century ancient mortars at Subramanya Swamy temple rediscovered after the 2004 tsunami near Mamallapuram Shore, India. Int. J. Conserv. Sci. 9(1), 25–38 (2018)

    Google Scholar 

  54. A. Moropoulou, P. Maravelaki-Kalaitzaki, M. Borboudakis, A. Bakolas, P. Michailidis, M. Chronopoulos, Historic mortars technologies in Crete and guidelines for compatible restoration mortars. PACT 55, 55–72 (1998)

    Google Scholar 

  55. JGJ/T 70, Standard for test method of basic properties of construction mortar, (2009)

  56. IS: 6932 (Part 11), Method of tests for Building Lime-Determination of setting time of lime, Bureau of Indian Standards, New Delhi,1983

  57. K. Santhanam, D. Shanmugavel, R. Ramadoss, V. Arakatavemula, Characterisation on ancient mortar of Chettinadu house at Kanadukathan Karaikudi, Tamil Nadu, India. Mater. Today Proc. 43(2), 1147–1153 (2021). https://doi.org/10.1016/j.matpr.2020.08.607

    Article  Google Scholar 

  58. S. Kotteeswaran, R. Ravi, Sustainability development and performance evaluation of natural hydraulic lime mortar for restoration. Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-21019-x

    Article  Google Scholar 

  59. S. Kotteeswaran, R. Ravi, Conservation & restoration of historic mortars at Alamparai fort with valley conical arch, Tamilnadu, India. Constr. Build. Mater. 339(1), 127619 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127619

    Article  Google Scholar 

  60. A.L. Velosa, F. Rocha, R. Veiga, Influence of chemical and mineralogical composition of metakaolin on mortar characteristics. Acta Geodyn. Et Geomater. 153(6), 121–126 (2009). https://doi.org/10.1016/j.jnucmat.2008.10.004

    Article  Google Scholar 

  61. A. Izaguirre, J. Lanas, J.I. Álvarez, Effect of water-repellent admixtures on the behavior of aerial lime-based mortars. Cem. Concr. Res. 39(11), 1095–1104 (2009). https://doi.org/10.1016/j.cemconres.2009.07.026

    Article  Google Scholar 

  62. N.R. Bhotla Harish, M.S. Dakshinamurthy, K. Jagannadha Rao, A study on mechanical properties of high strength concrete with alccofine as partial replacement of cement. Mater. Today Proc. 52(3), 1201–1210 (2022). https://doi.org/10.1016/j.matpr.2021.11.037

    Article  Google Scholar 

  63. E. Aggelakopoulou, A. Bakolas, A. Moropoulou, Properties of Lime–metakaolin mortars for the restoration of historic masonries. Appl. Clay Sci. 53, 15–19 (2011). https://doi.org/10.1016/j.clay.2011.04.005

    Article  Google Scholar 

  64. H. Liu, W. Wang, Y. Zhao, S. Song, Performance evaluation of lime mortars with metakaolin and CMC for restoration application. J. Mater. Civ. Eng. (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003377

    Article  Google Scholar 

  65. H. Liu, Y. Zhao, C. Peng, S. Song, A. Lopez-Valdivieso, Lime mortars—the role of carboxymethyl cellulose on the crystallization of calcium carbonate. Constr. Build. Mater. 168, 169–177 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.119

    Article  Google Scholar 

  66. IS 712, Specification for Building Limes , IS 712 (1984): Specification for Building Limes, India. (1984)

  67. M.T. Marvila, A.R.G. de Azevedo, L.B. de Oliveira, G. de Castro Xavier, C.M.F. Vieira, Mechanical, physical and durability properties of activated alkali cement based on blast furnace slag as a function of% Na2O. Case Stud. Constr. Mater. 15, e00723 (2021). https://doi.org/10.1016/j.cscm.2021.e00723

    Article  Google Scholar 

  68. S.M. Surendran, R. Ravi, G. Siva Subramani, S. Chattopadhyay, Characterization of ancient mortars of Veppathur temple. Int. J. Civ. Eng. Technol. 8(4), 2132–2139 (2017)

    Google Scholar 

  69. S. Kotteeswaran, R. Ravi, Restoration of an ancient temple at Parvathamalai in Tamil Nadu to preserve cultural heritage. Eur. Phys. J. Plus 137, 549 (2022). https://doi.org/10.1140/epjp/s13360-022-02741-4

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

KS was involved in the conceptualization, methodology, writing, and original draft preparation. RR contributed to the reviewing, results, and discussion.

Corresponding author

Correspondence to Ravi Ramadoss.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhanam, K., Ramadoss, R. The effect of alkali activation on the durability, mechanical properties, and characterization of alccofine-modified air lime mortar. Eur. Phys. J. Plus 137, 1057 (2022). https://doi.org/10.1140/epjp/s13360-022-03280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03280-8

Navigation