Log in

Bound states of the Dirac equation with non-central scalar and vector potentials: a modified double ring-shaped generalized Cornell potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 11 July 2022

This article has been updated

Abstract

In this paper, the bound state solutions and their corresponding relativistic energy eigenvalues of the Dirac equation are calculated with non-central scalar and vector potentials, a modified double ring-shaped generalized Cornell potential, in the framework of quasi-exactly solvable problems. In the case of spin symmetry, the Dirac equation is transformed into a Schrödinger-like equation. Using the separation of variables, we compute the angular parts of the solutions, of the corresponding Schrödinger-like equation, via the functional Bethe ansatz, and the radial part is determined by solving the biconfluent Heun differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. P.A.M. Dirac, Proc. R. Soc. (Lond.) A, 117–610 (1928)

    Google Scholar 

  2. P.A.M. Dirac, Proc. R. Soc. (Lond.) A, 118–351 (1928)

    Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon, London, 1974), p. 369

    Google Scholar 

  4. E.P. Wigner, Ann. Math. 40, 149 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Bargmann, E.P. Wigner, Proc. Nalt. Acad. Sci. USA 34, 211 (1948)

    Article  ADS  Google Scholar 

  6. E.V. Gorbar, V.P. Gusynin, A.B. Kuzmenko, S.G. Sharapov, Phys. Rev. B 86, 075414 (2012)

    Article  ADS  Google Scholar 

  7. E. McCann, V.I. Falko, Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  8. V.P. Gusynin, S.G. Sharapov, A.A. Reshetnyak, A.I.P. Conf, Proc. 1683, 020070 (2015)

    Google Scholar 

  9. A.D. Alhaidari, Ann. Phys. 320, 453–467 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Berkdemir, Y.F. Cheng, Phys. Scr. 79, 035003 (2009)

    Article  ADS  Google Scholar 

  11. M. Hamzavi, A.A. Rajabi, Eur. Phys. J. Plus 128, 29 (2013)

    Article  Google Scholar 

  12. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Ann. Phys. (Berl.) 525, 944–950 (2013)

    Article  ADS  Google Scholar 

  13. A.N. Ikot, E. Maghsoodi, H. Hassanabadi, J.A. Obu, J. Korean Phys. Soc. 64, 1248–1258 (2014)

    Article  ADS  Google Scholar 

  14. F. Yasuk, I. Boztosun, A. Durmus, ar**v: quant-ph/0605007

  15. X.Q. Hu, G. Luo, Z.M. Wu, L.B. Niu, Y. Ma, Commun. Theor. Phys. 53, 242–246 (2010)

    Article  ADS  Google Scholar 

  16. H. Boschi-Filho, A.N. Vaidya, Phys. Lett. A 145, 69–73 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y. Kasri, L. Chetouani, Can. J. Phys. 86, 1803–1089 (2008)

    Article  Google Scholar 

  18. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Chin. Phys. C 37, 113104 (2013)

    Article  ADS  Google Scholar 

  19. A. Schulze-Halberg, Chin. Phys. Lett. 23, 1365–1368 (2006)

    Article  ADS  Google Scholar 

  20. A.V. Turbiner, Sov. Phys. JETP 67, 230–236 (1988)

    ADS  Google Scholar 

  21. A.V. Turbiner, Commun. Math. Phys. 118, 467–474 (1988)

    Article  ADS  Google Scholar 

  22. A.G. Usheridze, Quasi-exactly Solvable Models in Quantum Mechanics (Taylor and Francis, Abingdon-on-Thames, 1994), p. 465

    Google Scholar 

  23. A.V. Turbiner, Phy. Rep. 642, 1–71 (2016)

    Article  ADS  Google Scholar 

  24. N. Hatami, M.R. Setare, Eur. Phys. J. Plus. 132, 311 (2017)

    Article  Google Scholar 

  25. R. Koç, M. Koca, E. Körcük, J. Phys. A 35, L527–L530 (2002)

    Article  ADS  Google Scholar 

  26. C.L. Ho, Ann. Phys. 321, 2170–2182 (2006)

    Article  ADS  Google Scholar 

  27. I. Bousafsaf, B. Boudjedaa, Eur. Phys. J. Plus 136, 803 (2021)

    Article  Google Scholar 

  28. W. Grenier, Relativistic Quantum Mechanics, 3rd edn. (Springer, Berlin, 2000)

    Google Scholar 

  29. S.H. Dong, Wave Equations in Higher Dimensions (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  30. R.L. Hall, N. Saad, Open Phys. 13, 83–89 (2015)

    Article  Google Scholar 

  31. H. Mutuk, Adv. High Energy Phys. 2019, 1–9 (2019)

    Article  Google Scholar 

  32. M. Hamzavi, H. Hassanabadi, A.A. Rajabi, Mod. Phys. Lett. A 25, 2447–2456 (2010)

    Article  ADS  Google Scholar 

  33. M. Hamzavi, A.A. Rajabi, Commun. Theor. Phys. 55, 35–37 (2011)

    Article  ADS  Google Scholar 

  34. S.H. Dong, Z.Q. Ma, Phys. Lett. A 312, 78–83 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  35. S.H. Dong, X.Y. Gu, Z.Q. Ma, J. Yu, Int. J. Mod. Phys. E 12, 555–565 (2003)

    Article  ADS  Google Scholar 

  36. M.K.F. Wong, H.Y. Yeh, Phys. Rev. D 25, 3396–3401 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  37. M.V. Carpio-Bernido, C.C. Bernido, Phys. Lett. A 134, 395–399 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  38. F.L. Lu, G.C. Zhuang, C.Y. Chen, J. Atom. Mol. Phys. 23, 493–498 (2006)

    Google Scholar 

  39. C. Chang-Yuan, L. Fa-Lin, S. Dong-Sheng, D. Shi-Hai, Chin. Phys. B. 22, 100302 (2013)

    Article  ADS  Google Scholar 

  40. B.J. Falaye, J. Math. Phys. 53, 082107 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  41. M.C. Zhang, G.H. Sun, S.H. Dong, Phys. Lett. A 374, 704–708 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Bakkeshizadeh, V. Vahidi, Adv. Stud. Theor. Phys. 6, 733–742 (2012)

    Google Scholar 

  43. M. Hamzavi, H. Hassanabadi, A.A. Rajabi, Int. J. Mod. Phys. E 19, 2189–2197 (2010)

    Article  ADS  Google Scholar 

  44. F.L. Lu, C.Y. Chen, Chin. Phys. B 19, 100309 (2010)

    Article  ADS  Google Scholar 

  45. E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar, Chin. Phys. B 22, 030302 (2013)

    Article  ADS  Google Scholar 

  46. H. Hassanabadi, A.N. Ikot, S. Zarrinkamar, Acta Phys. Pol. A 126, 647–651 (2014)

    Article  ADS  Google Scholar 

  47. Y.Z. Zhang, J. Phys. A 45, 065206 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Ronveaux, Heun’s Differential Equations (Oxford, New York, 1995), p. 384

    MATH  Google Scholar 

  49. E.R. Arriola, A. Zarzo, J.S. Dehesa, J. Comput. Appl. Math. 37, 161–169 (1991)

    Article  MathSciNet  Google Scholar 

  50. F. Caruso, J. Martins, V. Oguri, Ann. Phys. 347, 130–140 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable advice and appreciate their very constructive comments and suggestions which have improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badredine Boudjedaa.

Additional information

The original online version of this article was revised to correct the first author name to Djahida Bouchefra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchefra, D., Boudjedaa, B. Bound states of the Dirac equation with non-central scalar and vector potentials: a modified double ring-shaped generalized Cornell potential. Eur. Phys. J. Plus 137, 743 (2022). https://doi.org/10.1140/epjp/s13360-022-02976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02976-1

Navigation