Log in

Strain in BInGaN thin layers grown in nonpolar and semipolar directions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Strain properties of BInGaN layers assumed to be grown on GaN, AlN and ZnO substrates in nonpolar and semipolar directions have been calculated. The strain components in the laboratory system have been presented as a function of boron and indium contents of the layer for each substrate. We have found that the in-plane strain components go up to \(\approx \) 7, 10, and \(6\%\) in magnitude in the cases of GaN, AlN, and ZnO substrates, respectively. The piezeolectric properties of the BInGaN layers assumed to be grown in semipolar direction have been computed, and the outcomes for selected values of the boron content have been plotted against the indium content. Finally, the built-in electric field values inside the well layers of BInGaN/GaN and BInGaN/AlN quantum wells, considered to be grown in the semipolar direction, have been figured out. According to the results, the field in both types of the quantum wells reaches the values as high as \(\approx \) 10 MVcm\(^{-1}\) in magnitude.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. K. Greenman, L. Williams, E. Kioupakis, Lattice-constant and band-gap tuning in wurtzite and zincblende BInGaN alloys. J. Appl. Phys. 126, 055702 (2019). https://doi.org/10.1063/1.5108731

    Article  ADS  Google Scholar 

  2. L. Williams, E. Kioupakis, BInGaN alloys nearly lattice-matched to gan for high-power high-efficiency visible leds. J. Appl. Phys. 111, 211107 (2017). https://doi.org/10.1063/1.4997601

    Article  Google Scholar 

  3. F. Bernardini, Spontaneous and piezoelectric polarization: basic theory vs. practical recipes. In: Piprek, J. (ed.) Nitride Semiconductor Devices: Principles and Simulation, pp. 49–68. Wiley, The Federal Republic of Germany (2007)

  4. R. Kudrawiec, D. Hommel, Bandgap engineering in iii-nitrides with boron and group v elements: toward applications in ultraviolet emitters. Appl. Phys. Rev. (2020). https://doi.org/10.1063/5.0025371

    Article  Google Scholar 

  5. C.E. Dreyer, A. Janotti, C.G.V. de Walle, D. Vanderbilt, Correct implementation of polarization constants in wurtzite materials and impact on iii-nitrides. Phys. Rev. X 61, 021038 (2016). https://doi.org/10.1103/PhysRevX.6.021038

    Article  Google Scholar 

  6. J.-M. Chauveau, M. Laügt, P. Venneguès, M. Teisseire, B. Lo, C. Deparis, C. Morhain, B. Vinter, Non-polar a-plane znmgo/zno quantum wells grown by molecular beam epitaxy. Semicond. Sci. Technol. 23, 035005 (2008). https://doi.org/10.1088/0268-1242/23/3/035005

    Article  ADS  Google Scholar 

  7. H.R. Chen, C.Y. Tsai, Y.C. Huang, C.C. Kuo, H.C. Hsu, W.F. Hsieh, Optical properties of one- and two-dimensional excitons in m-plane zno/mgzno multiple quantum wells. J. Phys. D Appl. Phys. (2016). https://doi.org/10.1088/0022-3727/49/9/095105

    Article  Google Scholar 

  8. M. Monavarian, A. Rashidi, D. Feezell, A decade of nonpolar and semipolar iii-nitrides: a review of successes and challenges. Phys. Status Solidi A 216, 1800628 (2019). https://doi.org/10.1002/pssa.201800628

    Article  Google Scholar 

  9. M. Grundmann, A most general and facile recipe for the calculation of heteroepitaxial strain. Phys. Status Solidi B 257, 2000323 (2020). https://doi.org/10.1002/pssb.202000323

    Article  ADS  Google Scholar 

  10. M. Grundmann, Elastic theory of pseudomorphic monoclinic and rhombohedral heterostructures. J. Appl. Phys. 124, 185302 (2018). https://doi.org/10.1063/1.5045845

    Article  ADS  Google Scholar 

  11. S. Schulz, M.A. Caro, E.P. O’Reilly, O. Marquardt, Symmetry-adapted calculations of strain and polarization fields in (111)-oriented zinc-blende quantum dots. Phys. Rev. B 84, 125312 (2011). https://doi.org/10.1103/PhysRevB.84.125312

    Article  ADS  Google Scholar 

  12. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675–3696 (2003). https://doi.org/10.1063/1.1600519

    Article  ADS  Google Scholar 

  13. P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots, 4th edn. Wiley, Malaysia (2016). Chap. 7

  14. K. Shimada, T. Sota, K. Suzuki, First-principles study on electronic and elastic properties of bn, aln, and gan. J. Appl. Phys. 84, 4951–4958 (1998). https://doi.org/10.1063/1.368739

    Article  ADS  Google Scholar 

  15. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of zno materials and devices. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  ADS  Google Scholar 

  16. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, 1st edn. Wiley, Great Britain (2005). Chap. 10

  17. S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A.A. Sirenko, M. Abid, K. Pantzas, I.T. Ferguson, P.L. Voss, A. Ougazzaden, Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content. J. Cryst. Growth 312, 641–644 (2010). https://doi.org/10.1016/j.jcrysgro.2009.11.040

    Article  ADS  Google Scholar 

  18. S.-H. Park, D. Ahn, Theoretical studies on light emission characteristics of high-efficiency BInGaN/GaN quantum well structures with blue spectral range. Superlattices Microstruct. 96, 150–154 (2016). https://doi.org/10.1016/j.spmi.2016.05.024

    Article  ADS  Google Scholar 

  19. S.-H. Park, W.-P. Hong, J.-J. Kim, Comparison of optical properties of polarization-matched c-plane and lattice-matched a-plane BInGaN/GaN quantum well structures. Physica B Condens. Matter 570, 94–99 (2019). https://doi.org/10.1016/j.physb.2019.06.014

    Article  ADS  Google Scholar 

  20. G. Chen, X.Q. Wang, X. Rong, P. Wang, F.J. Xu, N. Tang, Z.X. Qin, Y.H. Chen, B. Shen, Intersubband transition in gan/ingan multiple quantum wells. Sci. Rep. 5, 11485 (2015). https://doi.org/10.1038/srep11485

    Article  ADS  Google Scholar 

  21. D. Feezell, Y. Sharma, S. Krishna, Optical properties of nonpolar iii-nitrides for intersubband photodetectors. J. Appl. Phys. 113, 133103 (2013). https://doi.org/10.1063/1.4798353

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Yıldırım.

Ethics declarations

Competing interests

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The author did not receive support from any organization for the submitted work.

Code availability

The codes used in this publication are available online (see references) or through direct contact.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, H. Strain in BInGaN thin layers grown in nonpolar and semipolar directions. Eur. Phys. J. Plus 137, 702 (2022). https://doi.org/10.1140/epjp/s13360-022-02925-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02925-y

Navigation