Log in

Higher-order mixed localized wave solutions and bilinear auto-Bäcklund transformations for the (3+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, the complex conjugate condition technique and the long wave limit method are proposed to obtain higher-order mixed localized wave solutions of the (3+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Three types of bilinear auto-Bäcklund transformations are derived via the Hirota bilinear method. In order to provide rich localized structures, the N-soliton solutions are supplemented via numerical simulation, which produces the hybrid solution of bell-shaped waves, periodic-breather waves and lump waves. The dynamical behaviors of mixed localized wave structures are demonstrated graphically via three-dimensional profiles for suitable values of the arbitrary free parameters. Meanwhile, different structures of the N-soliton solutions are systematically obtained, including different combinations of a-order bell-shaped waves, b-order periodic-breather waves and c-order lump waves. The proposed method can be better to study the novel localized wave solutions of nonlinear evolution equations, the results obtained can provide useful information for analyzing the theory of fluid mechanics, ocean dynamics and plasma physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors comment: All data generated or analyzed during this study are included in this published article.]

References

  1. X.Y. Gao, Y.J. Guo, W.R. Shan, Commun. Theor. Phys. 72, 095002 (2020)

    ADS  Google Scholar 

  2. X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Math. Lett. 120, 107161 (2021)

    Google Scholar 

  3. X.Y. Gao, Y.J. Guo, W.R. Shan, Chaos Soliton. Fract. 147, 110875 (2021)

    Google Scholar 

  4. X.Y. Gao, Y.J. Guo, W.R. Shan, Chaos Soliton. Fract. 150, 111066 (2021)

    Google Scholar 

  5. X.T. Gao, B. Tian, Y. Shen, C.H. Feng, Chaos Soliton. Fract. 151, 111222 (2021)

    Google Scholar 

  6. X.Y. Gao, Ocean Eng. 96, 245 (2015)

    Google Scholar 

  7. P.F. Han, Taogetusang. Mod. Phys. Lett. B 34, 2050329 (2020)

  8. X.Y. Gao, Y.J. Guo, W.R. Shan, Eur. Phys. J. Plus 135, 631 (2020)

    Google Scholar 

  9. Y. Shen, B. Tian, X. Zhao, W.R. Shan, Y. Jiang, Pramana-J. Phys. 95, 137 (2021)

    ADS  Google Scholar 

  10. X.Y. Gao, Y.J. Guo, W.R. Shan, Nonlinear Dyn. 105, 3849 (2021)

    Google Scholar 

  11. X.Y. Gao, Y.J. Guo, W.R. Shan, Rom. Rep. Phys. 73, 111 (2021)

    Google Scholar 

  12. P.F. Han, T. Bao, Nonlinear Dyn. 103, 1817 (2021)

    Google Scholar 

  13. X.Y. Gao, Y.J. Guo, W.R. Shan, Y.Q. Yuan, C.R. Zhang, S.S. Chen, Appl. Math. Lett. 111, 106627 (2021)

    Google Scholar 

  14. P.F. Han, T. Bao, Int. J. Mod. Phys. B 35, 2150079 (2021)

    ADS  Google Scholar 

  15. Z.F. Shehadeh, M.M. Alam, F.B. Malik, Phys. Rev. C 59, 826 (1999)

    ADS  Google Scholar 

  16. Z.Z. Kang, T.C. **a, W.X. Ma, Anal. Math. Phys. 11, 1 (2021)

    ADS  Google Scholar 

  17. S.F. Tian, J. Diff. Equ. 262, 506 (2017)

    ADS  Google Scholar 

  18. X.B. Wang, B. Han, Nonlinear Dyn. 99, 1363 (2020)

    Google Scholar 

  19. J.G. Liu, W.H. Zhu, L. Zhou, Math. Meth. Appl. Sci. 43, 458 (2020)

    Google Scholar 

  20. J.G. Liu, W.H. Zhu, Nonlinear Dyn. 103, 1841 (2021)

    Google Scholar 

  21. S. Kumar, A. Kumar, Nonlinear Dyn. 98, 1891 (2019)

    Google Scholar 

  22. R.K. Gupta, V. Kumar, R. Jiwari, Nonlinear Dyn. 79, 455 (2015)

    Google Scholar 

  23. S. Kumar, A. Kumar, A.M. Wazwaz, Eur. Phys. J. Plus 135, 870 (2020)

    Google Scholar 

  24. V. Kumar, R.K. Gupta, R. Jiwari, Chin. Phys. B 23, 030201 (2014)

    Google Scholar 

  25. S. Kumar, A. Kumar, H. Kharbanda, Phys. Scr. 95, 065207 (2020)

    ADS  Google Scholar 

  26. R. Jiwari, V. Kumar, S. Singh, Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01175-9

    Article  Google Scholar 

  27. M.S. Osman, D. Baleanu, A.R. Adem, K. Hosseini, M. Mirzazadeh, M. Eslami, Chin. J. Phys. 63, 122 (2020)

    Google Scholar 

  28. S. Kumar, S. Rani, Pramana-J. Phys. 94, 116 (2020)

    ADS  Google Scholar 

  29. K.S. Nisar, O.A. Ilhan, S.T. Abdulazeez, J. Manafian, S.A. Mohammed, M.S. Osman, Results Phys. 21, 103769 (2021)

    Google Scholar 

  30. M.S. Osman, Nonlinear Dyn. 87, 1209 (2016)

    Google Scholar 

  31. S.S. Chen, B. Tian, Q.X. Qu, H. Li, Y. Sun, X.X. Du, Chaos Soliton. Fract. 148, 111029 (2021)

    Google Scholar 

  32. M. Wang, B. Tian, Eur. Phys. J. Plus 136, 1002 (2021)

    Google Scholar 

  33. X. Zhao, B. Tian, X.X. Du, C.C. Hu, S.H. Liu, Eur. Phys. J. Plus 136, 159 (2021)

    Google Scholar 

  34. S.H. Liu, B. Tian, M. Wamg, Eur. Phys. J. Plus 136, 917 (2021)

    Google Scholar 

  35. Y. Shen, B. Tian, Appl. Math. Lett. 122, 107301 (2021)

    Google Scholar 

  36. X. Lü, S.J. Chen, W.X. Ma, Nonlinear Dyn. 86, 523 (2016)

    Google Scholar 

  37. A.M. Wazwaz, S.A. El-Tantawy, Nonlinear Dyn. 88, 3017 (2017)

    Google Scholar 

  38. M.S. Osman, A.M. Wazwaz, Math. Meth. Appl. Sci. 42, 6277 (2019)

    Google Scholar 

  39. J.G. Liu, W.H. Zhu, Comput. Math. Appl. 78, 848 (2019)

    MathSciNet  Google Scholar 

  40. C.C. Hu, B. Tian, X.Y. Wu, Y.Q. Yuan, Z. Du, Eur. Phys. J. Plus 133, 40 (2018)

    Google Scholar 

  41. J. Manafian, B.M. Ivatloo, M. Abapour, Math. Meth. Appl. Sci. 43, 1753 (2020)

    Google Scholar 

  42. J.G. Liu, M.S. Osman, W.H. Zhu, L. Zhou, D. Baleanu, AIP Adv. 10, 105325 (2020)

    ADS  Google Scholar 

  43. P.F. Han, T. Bao, Nonlinear Dyn. 105, 717 (2021)

    Google Scholar 

  44. X. Lü, X.F. Hua, S.J. Chen, X.F. Tang, Commun. Nonlinear Sci. Numer. Simul. 95, 105613 (2021)

    Google Scholar 

  45. P.F. Han, T. Bao, Eur. Phys. J. Plus 136, 925 (2021)

    Google Scholar 

  46. Y. Shen, B. Tian, S.H. Liu, Phys. Lett. A 405, 127429 (2021)

    Google Scholar 

  47. P.F. Han, T. Bao, Math. Meth. Appl. Sci. 44, 11307 (2021)

    Google Scholar 

  48. D. Zhao, Zhaqilao. Eur. Phys. J. Plus 135, 617 (2020)

    Google Scholar 

  49. D. Zhao, Zhaqilao. Nonlinear Dyn. 103, 1055 (2021)

  50. W.X. Ma, Phys. Lett. A 379, 1975 (2015)

    ADS  MathSciNet  Google Scholar 

  51. Y.L. Ma, A.M. Wazwaz, B.Q. Li, Math. Comput. Simulat. 187, 505 (2021)

    Google Scholar 

  52. Z.Z. Lan, Appl. Math. Lett. 102, 106132 (2020)

    MathSciNet  Google Scholar 

  53. W.Q. Peng, S.F. Tian, X.B. Wang, T.T. Zhang, Wave Motion 93, 102454 (2020)

    MathSciNet  Google Scholar 

  54. X. Wang, J. Wei, X.G. Geng, Commun. Nonlinear Sci. Numer. Simul. 83, 105116 (2020)

    MathSciNet  Google Scholar 

  55. A.M. Wazwaz, M. Mehanna, Optik 241, 166985 (2021)

    ADS  Google Scholar 

  56. S. Kumar, R. Jiwari, R.C. Mittal, J. Awrejcewicz, Nonlinear Dyn. 104, 661 (2021)

    Google Scholar 

  57. A.M. Wazwaz, M. Mehanna, Optik 243, 167421 (2021)

    ADS  Google Scholar 

  58. Y.J. Feng, Y.T. Gao, L.Q. Li, T.T. Jia, Eur. Phys. J. Plus 135, 272 (2020)

    Google Scholar 

  59. W.X. Ma, Y. You, Trans. Amer. Math. Soc. 357, 1753 (2005)

    MathSciNet  Google Scholar 

  60. J.M. Tu, S.F. Tian, M.J. Xu, T.T. Zhang, Taiwan. J. Math. 20, 823 (2016)

    Google Scholar 

  61. L.L. Feng, S.F. Tian, H. Yan, L. Wang, T.T. Zhang, Eur. Phys. J. Plus 131, 241 (2016)

    Google Scholar 

  62. G.F. Deng, Y.T. Gao, C.C. Ding, J.J. Su, Chaos Soliton. Fract. 140, 110085 (2020)

    Google Scholar 

  63. X. Lü, J. Li, Nonlinear Dyn. 77, 135 (2014)

    Google Scholar 

  64. H.C. Hu, Phys. Lett. A 373, 1750 (2009)

    ADS  MathSciNet  Google Scholar 

  65. Y. Li, R.X. Yao, Y.R. **a, S.Y. Lou, Commun. Nonlinear Sci. Numer. Simul. 100, 105843 (2021)

    Google Scholar 

  66. Z.Z. Lan, Y.T. Gao, J.W. Yang, C.Q. Su, Q.M. Wang, Mod. Phys. Lett. B 30, 1650265 (2016)

    ADS  Google Scholar 

  67. C.C. Hu, B. Tian, X.Y. Wu, Z. Du, X.H. Zhao, Chin. J. Phys. 56, 2395 (2018)

  68. M.J. Ablowitz, J. Satsuma, J. Math. Phys. 19, 2180 (1978)

    ADS  MathSciNet  Google Scholar 

  69. J. Satsuma, M.J. Ablowitz, J. Math. Phys. 20, 1496 (1979)

    ADS  MathSciNet  Google Scholar 

  70. J. Manafian, M. Lakestani, J. Geom. Phys. 150, 103598 (2020)

    MathSciNet  Google Scholar 

  71. Z.L. Zhao, L.C. He, Appl. Math. Lett. 111, 106612 (2021)

    Google Scholar 

  72. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, New York, 2004)

    MATH  Google Scholar 

  73. C.Y. Zhang, Y.T. Gao, L.Q. Li, C.C. Ding, Nonlinear Dyn. 102, 1773 (2020)

    Google Scholar 

  74. X.Y. Gao, Appl. Math. Lett. 91, 165 (2019)

    MathSciNet  Google Scholar 

  75. X.Y. Gao, Y.J. Guo, W.R. Shan, Eur. Phys. J. Plus 135, 689 (2020)

    Google Scholar 

  76. J. Manafian, O.A. Ilhan, A. Alizadeh, Math. Meth. Appl. Sci. 43, 9904 (2020)

    Google Scholar 

  77. X.Y. Gao, Y.J. Guo, W.R. Shan, T.Y. Zhou, M. Wang, D.Y. Yang, China Ocean Eng. 35, 518 (2021)

    ADS  Google Scholar 

  78. P.F. Han, T. Bao, Nonlinear Dyn. https://doi.org/10.1007/s11071-021-07019-5

Download references

Acknowledgements

The authors deeply appreciate the anonymous reviewers for their helpful and constructive suggestions, which can help improve this paper further. This work has been supported by the National Natural Science Foundation of China (Grant No. 11361040), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2020LH01008), the Graduate Students’ Scientific Research Innovation Fund Program of Inner Mongolia Normal University, China (Grant No. CXJJS19096, No. CXJJS20089) and the Graduate Research Innovation Project of Inner Mongolia Autonomous Region, China (Grant No. S20191235Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taogetusang Bao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the research effort and the publication of this paper.

Appendix

Appendix

$$\begin{aligned} \begin{aligned} \beta _{ij}&=\frac{12\lambda _{1}+6\lambda _{5}(m_{i}+m_{j})}{\lambda _{4}(m_{i}-m_{j})^{2}}, \theta _{i}=-x-m_{i}y-p_{i}z+(\lambda _{4}m_{i}^{2}+\lambda _{9}p_{i})t, B_{ijk}=B_{ij}B_{ik}B_{jk}, \\ \delta _{ij}&=\frac{6k_{j}[2\lambda _{1}+5\lambda _{3}k_{j}^{2}+\lambda _{5}(m_{i}+m_{j})]}{k_{j}^{2}[3\lambda _{1}+5\lambda _{3}k_{j}^{2}+\lambda _{5}(m_{i}+2m_{j})]-\lambda _{4}(m_{i}-m_{j})^{2}}, B_{ijkm}=B_{ij}B_{ik}B_{im}B_{jk}B_{jm}B_{km}. \end{aligned} \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, PF., Bao, T. Higher-order mixed localized wave solutions and bilinear auto-Bäcklund transformations for the (3+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Eur. Phys. J. Plus 137, 216 (2022). https://doi.org/10.1140/epjp/s13360-022-02413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02413-3

Navigation