Log in

Role of trivalent substitution at octahedral side on ferromagnetism and transport properties of ZnX2S4 (X = Ti, V, Cr) spinels

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The electronic, magnetic, and thermoelectric properties of ZnX2S4 (X = Ti, V, Cr) are addressed for spintronic. The more released in ferromagnetic (FM) states than antiferromagnetic (AFM) states report the stable ferromagnetism. The formation and cohesive energies ensure the FM states are thermodynamically favorable. The Heisenberg classical model computations have been applied for Curie temperature. The band structures (BS) and density of states (DOS) are computed to describe half-metallic ferromagnetism, spin polarization, spin–orbit coupling, and exchange mechanism. The ferromagnetism is further interpreted in terms of crystal field energy (Ecrys), direct exchange energy Δx(d), exchange constants (N0α and N0β), magnetic moments, and exchange splitting energy Δx (pd). The thermoelectric response is elaborated in terms of thermoelectric parameters including electrical and thermal conductivities, and Seebeck coefficient dependent power factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in the data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. M.N. Baibich, J.M. Broto, A. Fert, V.D.F. Nguyen, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. J. Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  2. M. Hassan, Q. Mahmood, S.M. Ramay, use of density functional theory to investigate the optical and magnetic behaviors of Ge1-xMnxTe half-metallic ferromagnets. Mater. Res. Bull. 123, 110706 (2020)

    Article  Google Scholar 

  3. Q. Mahmood, N.A. Noor, M. Jadan, J.S. Addasi, A. Mahmood, S.M. Ramay, First-principle investigation of ferromagnetism and thermoelectric characteristics of MgCr2X4 (X = S, Se) spinels. J. Solid State Chem. 285, 121261 (2020)

    Article  Google Scholar 

  4. V.A. Ivanov, K. Kanoda, Electronic structure and Mott transition in κ-(BEDT-TTF)2X salts. Physica C 268, 205 (1996)

    Article  ADS  Google Scholar 

  5. M. Yaseen, H. Ambreen, U. Shoukat, M. Butt, S. Noreen, S. Rehman, S.M. Ramay, Investigation of Cr doped CdTe for optoelectronic and spintronic devices applications. J. Ovonic Res. 15(6), 401–409 (2019)

    Google Scholar 

  6. C. Bourouis, A. Meddour, First-principles study of structural, electronic and magnetic properties in Cd1− xFexS diluted magnetic semiconductors. J. Magn. Magn. Mater. 324(6), 1040–1045 (2012)

    Article  ADS  Google Scholar 

  7. T. Dietl, A. Bonanni, H. Ohno, Families of magnetic semiconductors—an overview. J. Semicond. 40(8), 080301 (2019)

    Article  ADS  Google Scholar 

  8. V.R. Akshay, B. Arun, G. Mandal, M. Vasundhara, Structural, optical and magnetic behavior of sol–gel derived Ni-doped dilute magnetic semiconductor TiO2 nanocrystals for advanced functional applications. Phys. Chem. Chem. Phys. 21(5), 2519–2532 (2019)

    Article  Google Scholar 

  9. A. Aravind, M.K. Jayaraj, Zno-based dilute magnetic semiconductors, in Nanostructured Metal Oxides and Devices (Springer, Singapore, 2020), pp. 233–269

  10. F. Yokaichiya, A. Krimmel, V. Tsurkan, I. Margiolaki, P. Thompson, H.N. Bordallo, A. Buchsteiner, N. Stüßer, D.N. Argyriou, A. Loidl, Spin-driven phase transitions in ZnCr2Se4 and ZnCr2S4 probed by high-resolution synchrotron x-ray and neutron powder diffraction. Phys. Rev. B 79, 064423 (2009)

    Article  ADS  Google Scholar 

  11. I. Efthimiopoulos, T. Lochbiler, V. Tsurkan, A. Loid, V. Felea, Y. Wang, Structural behavior of ZnCr2S4 spinel under pressure. J. Phys. Chem. C 121, 769–777 (2017)

    Article  Google Scholar 

  12. S.M. Ramay, M. Hassan, Q. Mahmood, A. Mahmood, The study of electronic, magnetic, magneto-optical, and thermoelectric properties of XCr2O4 (X = Zn, Cd) through modified Becke and Johnson potential scheme (mBJ). Curr. Appl. Phys. 17(8), 1038–1045 (2017)

    Article  ADS  Google Scholar 

  13. Z. Wang, P. Lazor, S.K. Saxena, G. Artioli, High-pressure Raman spectroscopic study of spinel (ZnCr2O4). J. Solid. Stat. Chem. 165, 165–170 (2002)

    Article  ADS  Google Scholar 

  14. S.E. Dutton, Q. Huang, O. Tchernyshyov, C.L. Broholm, R.J. Cava, Sensitivity of the magnetic properties of the ZnCr2O4 and MgCr2O4 spinels to nonstoichiometry. Phys. Rev. B 83, 064407 (2011)

    Article  ADS  Google Scholar 

  15. S. Chen, Y. Wu, P. Cui, W. Chu, X. Chen, Z. Wu, New triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C 117, 25019–25025 (2013)

    Article  Google Scholar 

  16. E. Kojima, A. Miyata, S. Miyabe, S. Takeyama, H. Ueda, Y. Ueda, Full-magnetization of geometrically frustrated CdCr2O4 determined by Faraday rotation measurements at magnetic fields up to 140 T. Phys. Rev. B 77, 212408 (2008)

    Article  ADS  Google Scholar 

  17. A. Thiollier, P. Afanasiev, P. Delichere, M. Vrinat, Preparation and catalytic properties of chromium-containing mixed sulfides. J. Catal. 197(1), 58–67 (2001)

    Article  Google Scholar 

  18. R.L. Goswamee, F. Bosc, D. Cot, A. El Mansouri, M. Lopez, F. Morato, A. Ayral, Sol-gel derived nanocomposites and nanoporous oxide powders and related coatings for the reversible chemisorption of hydrogen sulfide. J. Sol-Gel Sci. Technol. 29(2), 97–105 (2004)

    Article  Google Scholar 

  19. A. Gudwański, E. Malicka, T. Groń, M. Karolus, M. Oboz, B. Sawicki, A. Nowok, S. Pawlus, H. Duda, Electrical and magnetic properties of ZnCr2S4–nanoparticles. J. Alloy. Comp. 861, 157973 (2021)

    Article  Google Scholar 

  20. K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)

    Article  ADS  Google Scholar 

  21. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2K Code, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2016)

    Google Scholar 

  22. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  23. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401–226404 (2009)

    Article  ADS  Google Scholar 

  24. S. Jiang, Y. Fang, R. Li, H. **ao, J. Crowley, C. Wang, T.J. White, W.A. Goddard III., Z. Wang, T. Baikie, J. Fang, Pressure-dependent polymorphism and band-gap tuning of methyl ammonium lead iodide perovskites. Angew. Chem. Int. Ed 55, 6540 (2016)

    Article  Google Scholar 

  25. G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  Google Scholar 

  26. Q. Mahmood, B.U. Haq, M. Rashid, N.A. Noor, S. AlFaify, A. Laref, First-principles study of magnetic and thermoelectric properties of SnFe2O4 and SnCo2O4 spinels. J. Solid. State. Chem. 286, 121279 (2020)

    Article  Google Scholar 

  27. B. Sabir, G. Murtaza, Q. Mahmood, R. Ahmad, K.C. Bhamu, First principles investigations of electronics, magnetic, and thermoelectric properties of rare earth based PrYO3 (Y = Cr, V) perovskites. Curr. Appl. Phys. 17, 1539–1546 (2017)

    Article  ADS  Google Scholar 

  28. Q. Mahmood, M. Hassan, N.A. Noor, Systematic study of room temperature ferromagnetism and optical response of Zn1-xTMxS/Se (TM = Mn, Fe Co, Ni) ferromagnets: first principle approach. J. Phys. Condn. Matt. Phys. 28, 506001 (2016)

    Article  Google Scholar 

  29. C.W. Zhang, S. Yan, Nonvolatile, reversible electric-field controlled switching of remanent magnetization in multifunctional ferromagnetic/ferroelectric hybrids. J. Appl. Phys. 107, 043913 (2010)

    Article  ADS  Google Scholar 

  30. Q. Mahmood, M. Hassan, S.H.A. Ahmad, K.C. Bhamu, A. Mahmood, S.M. Ramay, Study of electronic, magnetic, and thermoelectric properties of AV2O4 (A = Zn, Cd, Hg) by using DFT approach. J. Phys. Chem. Solids 128, 283–290 (2019)

    Article  ADS  Google Scholar 

  31. H.S. Saini, M. Singh, A.H. Reshak, M.K. Kashyap, A first principles study of half-metallic ferromagnetism in In1-xTixP (x = 0.06) diluted magnetic semiconductor. J. Magn. Magn. Mater. 331, 1–6 (2013)

    Article  ADS  Google Scholar 

  32. Y. **a, V. Ponnambalam, S. Bhattacharya, A.L. Pope, S.J. Poon, T.M. Tritt, Electrical transport properties of TiCoSb half-Heusler phases that exhibit high resistivity. J. Phys. Conden. Matt 13(1), 77 (2001)

    Article  ADS  Google Scholar 

  33. Z.Q. Bai, Y.H. Lu, L. Shen, V. Ko, G.C. Han, Y.P. Feng, Transport properties of high-performance all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi giant magnetoresistance device. J. Appl. Phys 111(9), 093911 (2012)

    Article  ADS  Google Scholar 

  34. H.C. Choi, J.H. Shim, B.I. Min, Electronic structures and magnetic properties of spinel Zn Mn2O4 under high pressure. Phys. Rev. B 74, 172103 (2006)

    Article  ADS  Google Scholar 

  35. S. Leoni, A.N. Yaresko, N. Perkins, H. Rosner, L. Craco, Orbital-spin order and the origin of structural distortion in MgTi2O4. Phys. Rev. B 78, 125105 (2008)

    Article  ADS  Google Scholar 

  36. A. Walsh, S.H. Wei, Y. Yan, M.M. Al-Jassim, J.A. Turner, Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations. Phys. Rev. B 76, 165119 (2007)

    Article  ADS  Google Scholar 

  37. G.M. Dalpian, S.H. Wei, Electron-mediated ferromagnetism, and negative s−d exchange splitting in semiconductors. Phys. Rev. B 73, 245204 (2006)

    Article  ADS  Google Scholar 

  38. Q. Mahmood, M. Hassan, E. Algrafy, B.U. Haq, N.A. Kattan, G. Murtaza, A. Laref, Theoretical investigations of optoelectronic and thermoelectric properties of the XIn2O4 (X = Mg, Zn, Cd) spinel oxides. J. Phys. Chem. Solids 144, 109481 (2020)

    Article  Google Scholar 

  39. C. Liu, D.T. Morelli, The theoretical investigation of electronic, magnetic, and thermoelectric behavior of LiZ2O4 (Z = Mn, Fe Co, and Ni) by modified Becke and Johnson approach. J. Elect. Mat. 40, 678 (2011)

    Article  ADS  Google Scholar 

  40. S. Singh, R.K. Maurya, S.K. Pandey, Investigation of thermoelectric properties of ZnV2O4 compound at high temperatures. J. Phys. D: Appl. Phys. 49, 425601 (2016)

    Article  Google Scholar 

  41. T. Ramachandran, N.E. Rajeevan, P.P. Pradyumnan, Enhanced Thermoelectric Properties of BiCoO3 by Nickel Substitution. Mater. Sci. Appl. 4, 816 (2013)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R7), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam M. Mustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Muhimeed, T.I., Mustafa, G.M., AlObaid, A.A. et al. Role of trivalent substitution at octahedral side on ferromagnetism and transport properties of ZnX2S4 (X = Ti, V, Cr) spinels. Eur. Phys. J. Plus 137, 299 (2022). https://doi.org/10.1140/epjp/s13360-022-02389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02389-0

Navigation