Log in

Automated MRI restoration via recursive diffusion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Denoising is an integral step in the automated analysis of Magnetic Resonance (MR) images. A computationally fast restoration algorithm with a minimum number of operational parameters and appreciably good edge-preserving characteristics is missing in the literature. To fill these gaps, an edge-preserving filter based on the principles of iterative diffusion and Beltrami flow is introduced in this paper. The value of the restored intensity at an arbitrary location during current iteration is a sum of two distinct terms. First term is the cumulative sum of flow values corresponding to its 8-connected neighbours, scaled by an arbitrary normalization constant. The second term is the restored intensity corresponding to that pixel computed in the previous iteration. The optimum value of the number iterations in the algorithm is determined with the help of a newly designed Target Function (TF). The TF is the absolute difference between Relative Statistics of Noise (RSN) and Relative Strength of Dominant Edges (RSDE). The proposed target function has shown good concordance with the subjective quality of output images at different values of the number of iterations. The proposed Optimized Beltrami Flow-based Iterative Diffusion filter (OBFID) is found to be superior to other filters in terms of the ability to preserve the edge strength and suppress noise. It is computationally fast compared to other filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

Code availability

Code can be made available on request.

References

  1. A. Chincarini, P. Bosco, G. Gemme et al., Alzheimer’s disease markers from structural MRI and FDG-PET brain images. Eur. Phys. J. Plus 127, 135 (2012). https://doi.org/10.1140/epjp/i2012-12135-6

    Article  Google Scholar 

  2. S.D. Bruno, M. Cercignani, C.A.M. Wheeler-Kingshott, Neurodegenerative dementias: From MR Physics lab to assessment room. Eur. Phys. J. Plus 127, 139 (2012). https://doi.org/10.1140/epjp/i2012-12139-2

    Article  Google Scholar 

  3. M. Irshad, N. Muhammad, M. Sharif et al., Automatic segmentation of the left ventricle in a cardiac MR short axis image using blind morphological operation. Eur. Phys. J. Plus 133, 148 (2018). https://doi.org/10.1140/epjp/i2018-11941-0

    Article  Google Scholar 

  4. V.R. Simi, D.R. Edla, J. Joseph, An inverse mathematical technique for improving the sharpness of magnetic resonance images. J. Ambient. Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-021-03416-1

    Article  Google Scholar 

  5. A.M. Wink, J.B.T.M. Roerdink, Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing. IEEE Trans. Med. Imaging 23(3), 374–387 (2004). https://doi.org/10.1109/TMI.2004.824234

    Article  Google Scholar 

  6. O.L. Usman, R.C. Muniyandi, K. Omar, M. Mohamad, Gaussian smoothing and modified histogram normalization methods to improve neural-biomarker interpretations for dyslexia classification mechanism. PLoS ONE 16(2), e0245579 (2021). https://doi.org/10.1371/journal.pone.0245579

    Article  Google Scholar 

  7. G. Hamarneh, J. Hradsky, Bilateral filtering of diffusion tensor magnetic resonance images. IEEE Trans. Image Process. 16(10), 2463–2475 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.A. Akar, Determination of optimal parameters for bilateral filter in brain MR image denoising. Appl. Soft Comput. 43, 87–96 (2016)

    Article  Google Scholar 

  9. E. Yahaghi, M. Mirzapour, A. Movafeghi et al., Interlaced bilateral filtering and wavelet thresholding for flaw detection in the radiography of weldments. Eur. Phys. J. Plus 135, 42 (2020). https://doi.org/10.1140/epjp/s13360-020-00119-y

    Article  Google Scholar 

  10. P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot, An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)

    Article  Google Scholar 

  11. Y. Gal, A.J.H. Mehnert, A.P. Bradley, K. McMahon, D. Kennedy, S. Crozier, Denoising of dynamic contrast-enhanced MR images using dynamic nonlocal means. IEEE Trans. Med. Imaging 29(2), 302–310 (2010)

    Article  Google Scholar 

  12. H.V. Bhujle, B.H. Vadavadagi, NLM based magnetic resonance image denoising – A review. Biomed. Signal Process. Control 47, 252–261 (2019)

    Article  Google Scholar 

  13. A. Movafeghi, M. Mirzapour, E. Yahaghi, Using nonlocal operators for measuring dimensions of defects in radiograph of welded objects. Eur. Phys. J. Plus 136, 655 (2021). https://doi.org/10.1140/epjp/s13360-021-01652-0

    Article  Google Scholar 

  14. K. Krissian, S. Aja-Fernandez, Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18(10), 2265–2274 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Gerig, O. Kubler, R. Kikinis, F.A. Jolesz, Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 11(2), 221–232 (1992)

    Article  Google Scholar 

  16. C. Tong, Y. Sun, N. Payet, S.H. Ong, A general strategy for anisotropic diffusion in MR image denoising and enhancement. Magn. Reson. Imaging 30(10), 1381–1393 (2012)

    Article  Google Scholar 

  17. L.B. Montefusco, D. Lazzaro, An iterative L1-based image restoration algorithm with an adaptive parameter estimation. IEEE Trans. Image Process. 21(4), 1676–1686 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. R.W. Liu, L. Shi, W. Huang, J. Xu, S.C.H. Yu, D. Wang, Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. Magn. Reson. Imaging 32(6), 702–720 (2014)

    Article  Google Scholar 

  19. P.G. Kuppusamy, J. Joseph, S. Jayaraman, A customized nonlocal restoration schemes with adaptive strength of smoothening for magnetic resonance images. Biomed. Signal Process. Control 49, 160–172 (2019)

    Article  Google Scholar 

  20. M. Rakhshanfar, M.A. Amer, Sparsity-based no-reference image quality assessment for automatic denoising. SIViP 12(4), 739–747 (2018)

    Article  Google Scholar 

  21. S. Gabarda, G. Cristóbal, Blind image quality assessment through anisotropy. J. Opt. Soc. Am. A 24(12), B42–B51 (2007)

    Article  ADS  Google Scholar 

  22. S. Gabarda, G. Cristóbal, N. Goel, Anisotropic blind image quality assessment: Survey and analysis with current methods. J. Vis. Commun. Image Represent. 52, 101–105 (2018)

    Article  Google Scholar 

  23. X. Zhu, P. Milanfar, Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. X. Kong, Q. Yang, No-reference image quality assessment for image auto-denoising. Int. J. Comput. Vision 126(5), 537–549 (2018)

    Article  MathSciNet  Google Scholar 

  25. V.R. Simi, D.R. Edla, J. Joseph, V. Kuppili, Analysis of controversies in the formulation and evaluation of restoration algorithms for MR images. Expert Syst. Appl. 135, 39–59 (2019)

    Article  Google Scholar 

  26. A. Spira, R. Kimmel, N. Sochen, A short - time Beltrami kernel for smoothing images and manifolds. IEEE Trans. Image Process. 16(6), 1628–1636 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Osadebey, M. Pedersen, D. Arnold, K. Wendel-Mitoraj, Image quality evaluation in clinical research: A case study on brain and cardiac MRI images in multi-centre clinical trials. IEEE J. Transl. Eng. Health Med. 6, 1–15 (2018)

    Article  Google Scholar 

  28. J. Joseph, R. Periyasamy, Nonlinear sharpening of MR images using a locally adaptive sharpness gain and a noise reduction parameter. Pattern Anal. Appl. 22(1), 273–283 (2019). https://doi.org/10.1007/s10044-018-0763-7

    Article  MathSciNet  Google Scholar 

  29. J. Joseph, B.N. Anoop, J. Williams, A modified unsharp masking with adaptive threshold and objectively defined ‘amount’ based on saturation constraints for MR images. Multimedia Tools Appl. 78(8), 11073–11089 (2019). https://doi.org/10.1007/s11042-018-6682-1

    Article  Google Scholar 

  30. B.N. Anoop, J. Joseph, J. Williams, A.M. Sebastian, J. Sivaraman, P. Sihota, A prospective case study of high boost, high frequency emphasis and two-way diffusion filters on MR images of Glioblastoma Multiforme. Australas. Phys. Eng. Sci. Med. 41(2), 415–427 (2018). https://doi.org/10.1007/s13246-018-0638-7

    Article  Google Scholar 

  31. J.M. Pignat, O. Koval, D.V.D. Ville, S. Voloshynovskiy, C. Michel, T. Pun, The impact of denoising on independent component analysis of functional magnetic resonance imaging data. J. Neurosci. Methods 213(1), 105–122 (2013). https://doi.org/10.1016/j.jneumeth.2012.10.011

    Article  Google Scholar 

  32. N. Kanemaru, H. Takao, S. Amemiya, O. Abe, The effect of a post-scan processing denoising system on image quality and morphometric analysis. J. Neuroradiol. (2021). https://doi.org/10.1016/j.neurad.2021.11.007

    Article  Google Scholar 

  33. M.F. Patón, L.C. Alberich, C.S. Nebot et al., “MR denoising increases radiomic biomarker precision and reproducibility in oncologic imaging. J. Digitaln Imaging 34, 1134–1145 (2021). https://doi.org/10.1007/s10278-021-00512-8

    Article  Google Scholar 

Download references

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simi Venuji Renuka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edla, D.R., Venuji Renuka, S. & Joseph, J. Automated MRI restoration via recursive diffusion. Eur. Phys. J. Plus 137, 192 (2022). https://doi.org/10.1140/epjp/s13360-022-02385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02385-4

Navigation