Log in

A new rational sine-Gordon expansion method and its application to nonlinear wave equations arising in mathematical physics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, a novel approach for constructing exact solutions to nonlinear partial differential equations is presented. The method is designed to be a generalization of the well-known sine-Gordon expansion since it is based on the use of the sine-Gordon equation as an auxiliary equation. In contrast to the classic sine-Gordon expansion method, it involves a more general ansatz that is a rational function, rather than a polynomial one, of the solutions of the auxiliary equation. This makes the approach introduced capable of capturing more exact solutions than that standard sine-Gordon method. Two important mathematical models arising in nonlinear science, namely, the (2 + 1)-dimensional generalized modified Zakharov-Kuznetsov equation and the (2 + 1) -Dimensional Broer-Kaup-Kupershmidt (BKK) system are used to illustrate the applicability, the simplicity, and the power of this method. As a result, we successfully obtain some solitary solutions that are known in the literature as well as other new soliton and singular soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Maucher, D. Buccoliero, S. Skupin, M. Grech, A.S. Desyatnikov, W. Krolikowski, Opt. Quantum Electron. 41, 337 (2009)

    Article  Google Scholar 

  2. M. Alidou, A. Kenfack-Jiotsa, T.C. Kofane, Chaos, Solitons Fractals 27, 914 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Nath, P. Pedri, L. Santos, Phys. Rev. Lett. 101, 210402 (2008)

    Article  ADS  Google Scholar 

  4. C.J. McKinstrie, R. Bingham, Phys. Fluids B 1, 230 (1989)

    Article  ADS  Google Scholar 

  5. P.B. Ndjoko, J.M. Bilbault, S. Binczak, T.C. Kofane, Phys. Rev. E 85, 011916 (2012)

    Article  ADS  Google Scholar 

  6. S.B. Yamgoue, F.B. Pelap, Phys. Lett. A 380, 2017 (2016)

    Article  ADS  Google Scholar 

  7. F.B. Pelap, J.H. Kamga, S.B. Yamgoue, S.M. Ngounou, A. Fomethe, Chin. J. Phys. 53, 080701 (2015)

    Google Scholar 

  8. E. Kengne, C. Tadmon, R. Vaillacourt, Chin. J. Phys. 47, 80 (2009)

    Google Scholar 

  9. E. Tala-Tebue, D.C. Tsobgni-Fozap, A. Kenfack-Jiotsa, T.C. Kofane, Eur. Phys. J. Plus 129, 136 (2014)

    Article  Google Scholar 

  10. G.R. Deffo, S.B. Yamgoue, F.B. Pelap, Eur. Phys. J. B 91, 242 (2018)

    Article  ADS  Google Scholar 

  11. H. Kumar, F. Chand, J. Theor. Appl. Phys. 8, 1 (2014)

    Article  Google Scholar 

  12. E. Tala-Tebue, Z. I. Djoufack, E. Fendzi-Donfack, A. Kenfack-Jiotsa, T.C. Kofané, Optik 127, 11124 (2016)

    Article  ADS  Google Scholar 

  13. S.A. El-Wakil, M.A. Abdou, Nonlinear Anal. 68, 235 (2008)

    Article  MathSciNet  Google Scholar 

  14. T. Zhang, J. Li, Nonlinear Dyn. 91, 1371 (2018)

    Article  Google Scholar 

  15. J. Li, Z. Qiao, J. Math. Phys. 54, 123501 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. H.M. Baskonus, Nonlinear Dyn. 86, 177 (2016)

    Article  MathSciNet  Google Scholar 

  17. O.A. Ilhan, T.A. Sulaiman, H. Bulut, H.M. Baskonus, Eur. Phys. J. Plus 133, 27 (2018)

    Article  Google Scholar 

  18. H. Bulut, T.A. Sulaiman, H.M. Baskonus, Eur. Phys. J. Plus 132, 459 (2017)

    Article  Google Scholar 

  19. S.B. Yamgoue, G.R. Deffo, E. Tala-Tebu, F.B. Pelap, Chin. Phys. B 27, 096301 (2018)

    Article  ADS  Google Scholar 

  20. S.B. Yamgoue, G.R. Deffo, E. Tala-Tebu, F.B. Pelap, Chin. Phys. B 27, 126300 (2018)

    Google Scholar 

  21. Z. Yan, Phys. Lett. A 252, 291 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, in Fortran Numerical Recipes, Vol. 1, 2nd edition (Cambrige University Press, New York, 1992)

  23. W.X. Ma, J.H. Lee, Chaos, Solitons Fractals 42, 1356 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. G.R. Deffo, S.B. Yamgoue, F.B. Pelap, Phys. Rev. E 98, 062201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. W.S. Duan, Europhys. Lett. 66, 192197 (2004)

    Article  Google Scholar 

  26. H.L. Zhen, B. Tian, H. Zhong, Y. Jiang, Comput. Math. Appl. 68, 579 (2014)

    Article  Google Scholar 

  27. A. Sardar, S.M. Husnine, S.T.R. Rizvi, M. Younis, K. Ali, Nonlinear Dyn. 82, 1317 (2015)

    Article  Google Scholar 

  28. S.K. El-Labany, W.F. El-Taibany, E.E. Behery, N.A. Zedan, Eur. Phys. J. Plus 130, 250 (2015)

    Article  Google Scholar 

  29. H.W. Yang, Z.H. Xu, D.Z. Yang, X.R. Feng, B.S. Yin, H.H. Dong, Adv. Differ. Equ. 2016, 167 (2016)

    Article  Google Scholar 

  30. E.V. Krishnan, A. Biswas, Phys. Wave Phenom. 18, 256 (2010)

    Article  ADS  Google Scholar 

  31. G.C. Das, J. Sarma, Yi-Tian Gao, C. Uberoi, Phys. Plasmas 7, 2374 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. Z.Z. Dong, Y. Chen, Y.H. Lang, Chin. Phys. B 19, 090205 (2010)

    Article  ADS  Google Scholar 

  33. A. Nakamura, R. Hirota, J. Phys. Soc. Jpn. 48, 1755 (1980)

    Article  ADS  Google Scholar 

  34. J.A. Giannini, R.I. Joseph, IEEE J. Quantum Electron. 26, 2109 (1990)

    Article  ADS  Google Scholar 

  35. J.P. Hamaide, P. Emplit, M. Haelterman, Opt. Lett. 16, 1578 (1991)

    Article  ADS  Google Scholar 

  36. Y.S. Kivshar, M. Haelterman, P. Emplit, J.P. Hamaide, Opt. Lett. 19, 19 (1994)

    Article  ADS  Google Scholar 

  37. J. Manafian, M. Lakestanio, Indian J. Phys. 91, 243 (2017)

    Article  ADS  Google Scholar 

  38. S.A. El-Wakil, M.A. Abdou, Chaos, Solitons Fractals 31, 840 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  39. E.W. Weisstein, Concise Encyclopedia of Mathematics, 2nd edition (CRC Press, New York, 2002)

  40. O.A. Ilhan, T.A. Sulaiman, H. Bulut, H.M. Baskonus, Eur. Phys. J. Plus 133, 27 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Bruno Yamgoué.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamgoué, S.B., Deffo, G.R. & Pelap, F.B. A new rational sine-Gordon expansion method and its application to nonlinear wave equations arising in mathematical physics. Eur. Phys. J. Plus 134, 380 (2019). https://doi.org/10.1140/epjp/i2019-12733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12733-8

Navigation