Log in

A note on Lorentz transformations and simultaneity in classical physics and special relativity

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Since early models of wave propagation in both stationary and moving media during the nineteenth century, the Lorentz transformation (LT) has played a key role in describing characteristic wave phenomena, e.g., the Doppler shift effect. In these models LT connects two different events generated by wave propagations, as observed in two reference systems and the synchronism is absolute. In relativistic physics LT implements the relativity principle. As a consequence, it connects two space-time event coordinates that both correspond to the same physical event and “absolute synchronization” is not allowed. The relativistic interpretation started from Einstein’s early criticism of the notion of “simultaneity” and Minkowski’s invariance of the space-time interval. In this paper, the two different roles of LT, i.e., in classical wave propagation theories and in relativistic physics, are discussed. Einstein’s early criticism is also re-examined with respect to LT in view of its significance for the notion of simultaneity. Indeed, that early criticism is found to be defective. Our analysis is also useful for general readers in view of its impact on modern speculations about the existence of a preferred system of reference Σ, where light propagation is isotropic, and related implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolós V.J., Liern V., and Olivert J. 2002.Relativistic Simultaneity and Causality, Int. J. Theor. Phys. 41, No. 6, June: 1007–1018.

    Article  MathSciNet  Google Scholar 

  2. Bridgman P.M.A. 1927.The logic of modern Physics, N.Y. the Macmillan Company: 164–165.

  3. Consoli M., Pagano A. and Pappalardo L. 2003.Vacuum condensates and ether-drift experiments, Phys. Lett. A 318: 292–299.

    Article  ADS  Google Scholar 

  4. Consoli M. and Pluchino A. 2018.Cosmic Microwave Background and the issue of a fundamental preferred frame, Eur. Phys. J. Plus, 133: 295.

    Article  Google Scholar 

  5. Consoli M. and Pluchino A. 2019.Michelson-Morley Experiments-An Enigma for Physics and the History of Science, World Scientific Publishing Co. Pte.Ltd. and references therein.

  6. Di Mauro P., Notarrigo S, and Pagano A. 1997.Riesame della teoria di Augusto Righi sull’ apparato dell’esperimento di Michelson e Morley, Quaderni di Storiadella Fisica, 2, Ed. Compositori Bologna, SIF: 101–110.

  7. Einstein A. 1905.Zur Elektrodynamik bewegter Körper, Ann. Phys. 17: 891–921.

    Article  Google Scholar 

  8. Ernstt A. and Jong-** Hsu. 2001.First Proposal of the Universal Speed of Light by Voigt in 1887, Chin. J. Phys. 39, 3: 211–230.

    Google Scholar 

  9. Feynman R.P., Leighton R.B., and Sands M. 1966.The Feynman Lectures on Physics, 2nd edn. Addison Wesley, Reading, Massachusetts, : Chap. 15–6.

  10. Grünbaum A. 2010.David Malament and the Conventionality of Simultaneity: A Reply, Found. Phys., 40: 1285–1297.

    Article  ADS  MathSciNet  Google Scholar 

  11. Hirosige T. 1968.Theory of Relativity and the Ether, Jap. Studies in the History of Science, 7: 37–53.

    Google Scholar 

  12. Jammer M. 2006Concepts of Simultaneity From Antiquity to Einstein and Beyond, Edited by The Johns Hopkins University Press, Baltimore.

  13. Klein F.C. 1927.Vorlesungen üuber die Entwicklung der Mathematik im 19, Jahrhundert, Teil II, Springer.

  14. Kostro L. 2000.Einstein and the Ether, First Pub. by Apeiron. Canada.

  15. La Rosa M. 1923.Le concept de temps dans la Théorie d’Einstein, II partie: Le Postulat de la constance de la vitesse de la lumière, Scientia, July–August, Vol. XXXIV: 293–306.

  16. Landau L.D. and Lifshitz E.M. 2000.The classical theory of Fields, 2, Butterworth-, Linacre House, Jordan Hill, Oxford.

  17. Leighton R.B. 1959.Principles of Modern Physics, McGraw-Hill Book Company Inc., New York Toronto London.

  18. Lorentz H.A. 1909.The Theory of Electrons, The New York, The Columbia University Press, Macmillan Company, LTD.

  19. Mamone-Caprio M. 2012.Simultaneity as an Invariant Equivalence Relation, Found. Phys. 42: 1365–1383.

    Article  ADS  MathSciNet  Google Scholar 

  20. Mann R.A. 1974.The classical Dynamics of Particles, Academic Press, Inc ., New York London.

  21. Michelson A.A. and Morley E.W. 1887. Am. J. Sci. 34: 333.

    Article  ADS  Google Scholar 

  22. Minkowski H. 1908.Die Grundgleichungen fü r die elektromagnetischen Vorgänge in bewegter Körper, Gött. Nachr. 53.

  23. Minkowski H. 1909Raum und Zeit, Phys. Zeits. 10: 104. English trans. 1923: Space and time, Lorentz H.A., Einstein, A., Minkowski H., Weyl H., The Principle of Relativity, Methuen, London. 08540: Chap. 11.

    MATH  Google Scholar 

  24. Mittelstaedt P. 2011.The Problem of Interpretation of Modern Physics, Found. Phys. 41: 1667–1676.

    Article  ADS  MathSciNet  Google Scholar 

  25. Morse P.M. and Ingard K.U. 1986.Theoretical Acostics, Princeton University Press, Princeton, New Jersey.

  26. Pauli W. 1921.Theory of Relativity, translated from German by G. Field, Pergamon Press, London, 1958.

  27. Poincaré H. 1905.The principles of Mathemathical Physics, English Translation by G.B. Halsted, The Monist XV: 1–24.

    MathSciNet  MATH  Google Scholar 

  28. Prokhovnik S.J. 1993.The Physical Interpretation of Special Relativity - a Vindication of Hendrik Lorentz, Z. Naturforschung, 48a: 925–931.

    Article  ADS  Google Scholar 

  29. Shanahan D. 2014.A Case for Lorentzian Relativity, Found. Phys. 44: 349–367.

    Article  ADS  MathSciNet  Google Scholar 

  30. Synge J.L. 1956.Relativity: The Special Theory, North-Holland Pub. Comp., Amsterdam.

  31. Somigliana C. 1922.Sulla trasformazione di Lorentz, Rend. Mat. Acc. dei Lincei, s.5, 31: 409–414.

    MATH  Google Scholar 

  32. Van Camp W. 2011.On Kinematic versus Dynamic Approaches to Special Relativity, Philosophy of Science, 78, No. 5, The University of Chicago Press on behalf of the Philosophy of Science Association: 1097–1107.

    Article  MathSciNet  Google Scholar 

  33. Voigt W. 1887.Über das Doppler’sche Prinzip, Nachirichten der Konigliche Gesellschaft der Wissenschaften zu Göttingen, 41.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Pagano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagano, A., Pagano, E.V. A note on Lorentz transformations and simultaneity in classical physics and special relativity. EPJ H 44, 321–330 (2019). https://doi.org/10.1140/epjh/e2019-90058-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2019-90058-4

Navigation