Log in

Sedimentation rate of erythrocyte from physics prospective

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

An erythrocytes sedimentation rate (ESR) measures how fast a blood sample sediments along a test tube in one hour in a clinical laboratory. Since elevated level of ESR is associated with inflammatory diseases, ESR is one of the routine hematology test in a clinical laboratory. In this paper, the physics of erythrocyte (RBC) sedimentation rate as well as the dynamics of the RBC is explored by modeling the dynamics of the cells as the motion of Brownian particle moving in a viscous medium. The viscous friction of blood \( \gamma\) is considered to decrease as the temperature of the medium increases. The results obtained in this work show that the ESR increases as the number of red blood cells (that bind together in the sedimentation process) steps up. The room temperature also affects the sedimentation rate. As the room temperature rises up, the ESR steps up. Furthermore the dynamics of the RBC along a Westergren pipet that is held in an upright position is explored. The exact analytic result depicts that the velocity of cells increases as the number of cells that form rouleaux steps up. Since our study is performed by considering physiological parameters, the results obtained in this work not only can be justified experimentally but also helps to understand most hematological experiments that are conducted in vitro.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Baskurt, B. Neu, H.J. Meiselman, Red Blood Cell Aggregation (CRC Press, 2011) https://doi.org/10.1201/b11221

  2. Alan H.B. Wu, Tietz Clinical Guide to Laboratory Tests (Elsevier Health Sciences, 2006)

  3. S.E. Bedell, B.T. Bush, Am. J. Med. 78, 1001 (1985)

    Article  Google Scholar 

  4. D. Davalos, K. Akassoglo, Semin. Immunopathol. 34, 43 (2012)

    Article  Google Scholar 

  5. G.C. Sharma, M. Jain, R.N. Saral, Comput. Biol. Med. 26, 1 (1996)

    Article  Google Scholar 

  6. J. Vanterler da C. Sousa, E. Capelas de Oliveira, L.A. Magna, AIMS Math. 4, 692 (2017)

    Article  Google Scholar 

  7. J. Vanterler da C. Sousa, Magun N.N. dos Santos, L.A. Magna, E. Capelas de Oliveira, Comput. Appl. Math. 37, 6903 (2018)

    Article  MathSciNet  Google Scholar 

  8. T. Tabuchi, H. Tominaga, N. Tatsuni, Southeast Asian J. Trop. Med. 33, 151 (2002)

    Google Scholar 

  9. H.A. Kramer, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  10. M.A. Taye, S. Duki, Eur. Phys. J. B 88, 322 (2015)

    Article  ADS  Google Scholar 

  11. M.A. Taye, W. Sung, EPL 90, 3008 (2010)

    Google Scholar 

  12. M.A. Taye, Phys. Rev. E 82, 021111 (2010)

    Article  ADS  Google Scholar 

  13. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 1984)

  14. O. Reynolds, Philos. Trans. R. Soc. London 177, 157 (1886)

    Article  ADS  Google Scholar 

  15. E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M.C. Pelleri, S. Tassani, Ann. Human Biol. 40, 463 (2013)

    Article  Google Scholar 

  16. S.R. Hillman, K.A. Ault, H.M. Rinder, Hematology in Clinical Practice: A Guide to Diagnosis and Management (McGraw-Hill Professional, 2005)

  17. A.A. D'Alessandro, Blood Transfus. 15, 182 (2017)

    Google Scholar 

  18. R.E. Klabunde, Cardiovascular Physiology Concepts (Lippincott Williams and Wilkins, 2005)

  19. M.A. Taye, Phys. Rev. E 94, 032111 (2016)

    Article  ADS  Google Scholar 

  20. W. Yin, Z. Xu, J. Sheng, X. **e, C. Zhang, Exp. Ther. Med. 14, 1909 (2017)

    Article  Google Scholar 

  21. M.A. Taye, M. Bekele, Eur. Phys. J. B 38, 457 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Asfaw Taye.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taye, M.A. Sedimentation rate of erythrocyte from physics prospective. Eur. Phys. J. E 43, 19 (2020). https://doi.org/10.1140/epje/i2020-11943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11943-2

Keywords

Navigation