Log in

Self-propulsion of droplets driven by an active permeating gel

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equation, the porous medium is characterised by a single lengthscale \(\ell\) --the square root of the permeability. We compute the flow fields inside and outside of the droplet as well as the energy dissipation as a function of \(\ell\). We furthermore show that there are optimal gel fractions, giving rise to maximal linear and rotational velocities. In the limit \(\ell\rightarrow\infty\), corresponding to a very dilute gel, we recover Stokes flow. The opposite limit, \(\ell\rightarrow 0\), corresponding to a space filling gel, is singular and not equivalent to Darcy’s equation, which cannot account for self-propulsion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lauga, T. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  ADS  Google Scholar 

  2. R.E. Goldstein, J.W. van de Meent, Interface Focus 5, 20150030 (2015)

    Article  Google Scholar 

  3. R. Kree, P. Burada, A. Zippelius, J. Fluid Mech. 821, 595 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. W. Alt, M. Dembo, Math. Biosci. 156, 207 (1999)

    Article  Google Scholar 

  5. J. Spitzer, B. Poolman, FEBS Lett. 587, 2094 (2013)

    Article  Google Scholar 

  6. E. Moeendarbary, L. Valon, M. Fritzsche, A. Harris, D. Moulding, A. Thrasher, E. Stride, L. Mahadevan, G.T. Charras, Nat. Mat. 12, 253 (2013)

    Article  Google Scholar 

  7. M. Radszuweit, S. Alonso, H. Engel, M. Bär, Phys. Rev. Lett. 110, 138102 (2013)

    Article  ADS  Google Scholar 

  8. C.A. Weber, C.H. Rycroft, L. Mahadevan, ar**v:1710.03633 (2017)

  9. A.C. Callan-Jones, F. Jülicher, New J. Phys. 13, 093027 (2011)

    Article  ADS  Google Scholar 

  10. S. Köhler, V. Schaller, A. Bausch, Nat. Mat. 10, 462468 (2011)

    Article  Google Scholar 

  11. F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi, M.J. Bowick, M.C. Marchetti, Z. Dogic, A.R. Bausch, Science 345, 1135 (2014)

    Article  ADS  Google Scholar 

  12. M. Weiss, J. Frohnmayer, L. Benk, B. Haller, J.J.T. Heitkamp, M. Börsch, R. Lira, R. Dimova, R. Lipowsky, E. Bodenschatz, J. Baret, T. Vidakovic-Koch, K. Sundmacher, I. Platzman, J. Spatz, Nat. Mat. 17, 89 (2017)

    Article  Google Scholar 

  13. D. Zwicker, R. Seyboldt, C.A. Weber, A.A. Hyman, F. Jülicher, Nat. Phys. 13, 408 (2014)

    Article  Google Scholar 

  14. D. Zwicker, A. Hyman, F. Jülicher, Phys. Rev. E 92, 012317 (2015)

    Article  ADS  Google Scholar 

  15. L. Durlofsky, J. Brady, Phys. Fluids 30, 3329 (1987)

    Article  ADS  Google Scholar 

  16. J. Rubinstein, S. Torquato, J. Fluid Mech. 206, 25 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Whitaker, Transp. Porous Media 1, 3 (1986)

    Article  Google Scholar 

  18. L. Wang, L. Wang, Z. Guo, J. Mi, Int. J. Heat Mass Transfer 82, 357 (2015)

    Article  Google Scholar 

  19. A. Tamayol, M. Bahrami, Phys. Rev. E 83, 046314 (2011)

    Article  ADS  Google Scholar 

  20. A. Koponen, M. Kataja, J. Timonen, Phys. Rev. E 56, 3319 (1997)

    Article  ADS  Google Scholar 

  21. A.I. Koponen, D. Kandhai, E. Hellen, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot, J. Timonen, Phys. Rev. Lett. 80, 716 (1998)

    Article  ADS  Google Scholar 

  22. P. Carman, Flow of Gases Through Porous Media (Butterworths, London, 1956)

  23. J. Ochoa-Tapia, S. Whitaker, Int. J. Heat Mass Transfer 38, 2635 (1995)

    Article  Google Scholar 

  24. W. Jäger, A. Mikelic, N. Neuss, IAM J. Sci. Comput. 22, 2006 (2001)

    Google Scholar 

  25. M. Minale, Phys. Fluids 26, 123101 (2014)

    Article  ADS  Google Scholar 

  26. M. Minale, Phys. Fluids 26, 123102 (2014)

    Article  ADS  Google Scholar 

  27. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, 1965)

  28. M. Lighthill, Commun. Pure Appl. Math. 9, 109 (1952)

    Article  Google Scholar 

  29. A. Shapere, F. Wilczek, J. Fluid Mech. 198, 587 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Vafai (Editor), Handbook of Porous Media (Taylor and Francis, 2005)

  31. M. Erhardt, Progress in Computational Physics (PiCP): Coupled Fluid Flow in Energy, Biology and Environmental Research, Vol. 2 (Bentham, 2012) Chapt. 1, pp. 3--12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kree, R., Zippelius, A. Self-propulsion of droplets driven by an active permeating gel. Eur. Phys. J. E 41, 118 (2018). https://doi.org/10.1140/epje/i2018-11729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11729-1

Keywords

Navigation