Log in

Enhancement of mirror–mirror entanglement with intracavity squeezed light and squeezed-vacuum injection

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this manuscript, we investigate the enhancement of the transfer of quantum correlations from squeezed light to movable mirrors within an optomechanical system. This enhancement was achieved via the injection of squeezed light in the cavities and via intracavity squeezed light. We quantify the entanglement between mechanical oscillators via logarithmic negativity. We demonstrate that entanglement is influenced by various factors, including the gain of the parametric amplifier, the squeezing parameter characterizing the squeezed light, the rate of the phonon tunneling process, the coupling strength of the photon hop** process and the bath temperature of the mechanical oscillators. We have shown that entanglement can be improved by a convenient choice of coupling strength in the case of the photon hop** process, as well as for specified values of the gain of the parametric amplifier.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The study that is the subject of this article used no data].

References

  1. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  2. J.Q. Liao, C.K. Law, Phys. Rev. A 84, 053838 (2011)

    Article  ADS  Google Scholar 

  3. M. Aspelmeyer, P. Meystre, K. Schwab, Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  4. M. Asjad, S. Zippilli, D. Vitali, Phys. Rev. A 93, 062307 (2016)

    Article  ADS  Google Scholar 

  5. M. Amazioug, M. Nassik, Int. J. Quantum Inf. 17, 1950045 (2019)

    Article  MathSciNet  Google Scholar 

  6. M. Amazioug, M. Nassik, N. Habiballah, Chin. J. Phys. 58, 1–7 (2019)

    Article  Google Scholar 

  7. M. Amazioug, B. Teklu, M. Asjad, Sci. Rep. 13, 3833 (2023)

    Article  ADS  Google Scholar 

  8. J.D. Teufelet et al., Nature 475, 359–363 (2011)

    Article  ADS  Google Scholar 

  9. M. Bhattacharya, P. Meystre, Phys. Rev. Lett. 99, 073601 (2007)

    Article  ADS  Google Scholar 

  10. J.Q. Liao, L. Tian, Phys. Rev. Lett. 116, 163602 (2016)

    Article  ADS  Google Scholar 

  11. S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002)

    Article  ADS  Google Scholar 

  12. B. Teklu, T. Byrnes, F.S. Khan, Phys. Rev. A 97(2), 023829 (2018)

    Article  ADS  Google Scholar 

  13. D. Vitali, S. Gigan, A. Ferreira, H.R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  14. J.Q. Zhang, Y. Li, M. Feng, Y. Xu, Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  15. H. **ong, Z.X. Liu, Y. Wu, Opt. Lett. 42, 3630 (2017)

    Article  ADS  Google Scholar 

  16. C.M. Caves, Phys. Rev. Lett. 45, 75 (1980)

    Article  ADS  Google Scholar 

  17. V. Braginsky, S.P. Vyatchanin, Phys. Lett. A 293, 228 (2002)

    Article  ADS  Google Scholar 

  18. S. Singh et al., Phys. Rev. A 86, 021801 (2012)

    Article  ADS  Google Scholar 

  19. Y.D. Wang, A.A. Clerk, Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  20. E.A. Sete, H. Eleuch, C.H.R. Ooi, J. Opt. Soc. Am. B 31, 2821–2828 (2014)

    Article  ADS  Google Scholar 

  21. C.H. Bennett et al., Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  22. C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  23. V. Scarani, S. Lblisdir, N. Gisin, A. Acin, Rev. Mod. Phys. 77, 1225 (2005)

    Article  ADS  Google Scholar 

  24. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, London, 2010)

  26. S. Asiri, Z. Liao, M.S. Zubairy, Phys. Scr. 93, 124002 (2018)

  27. K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E.S. Polzik, P. Zoller, Phys. Rev. A 79, 063819 (2009)

    Article  ADS  Google Scholar 

  28. M. Amazioug, B. Maroufi, M. Daoud, Quantum Inf. Process. 19, 1–16 (2020)

    Article  Google Scholar 

  29. G.S. Agarwal, S. Huang, Phys. Rev. A 93, 043844 (2016)

    Article  ADS  Google Scholar 

  30. M. Amazioug, B. Maroufi, M. Daoud, Phys. Lett. A 384, 126705 (2020)

    Article  MathSciNet  Google Scholar 

  31. S. Bougouffa, M. Al-Hmoud, Int. J. Theor. Phys. 59, 1699–1716 (2019)

    Article  Google Scholar 

  32. J. Hmouch, M. Amazioug, M. Nassik, Appl. Phys. B 129, 151 (2023)

    Article  ADS  Google Scholar 

  33. M. Amazioug, B. Maroufi, M. Daoud, The. Eur. Phys. J. D 74, 1–9 (2020)

    ADS  Google Scholar 

  34. A.A. Rehaily, S. Bougouffa, Int. J. Theor. Phys. 56, 1399–1409 (2017)

    Article  Google Scholar 

  35. S. Bougouffa, M. Al-Hmoud, J.W. Hakami, Int. J. Theor. Phys. 61, 190 (2022)

    Article  Google Scholar 

  36. M. Ludwig, F. Marquardt, Phys. Rev. Lett. 111, 073603 (2013)

    Article  ADS  Google Scholar 

  37. A. Al Qasimi, D.F.V. James, Phys. Rev. A. 77, 12117 (2008)

    Article  ADS  Google Scholar 

  38. M. Amazioug, M. Daoud, Eur. Phys. J. D 75, 178 (2021)

    Article  ADS  Google Scholar 

  39. M. Asjad et al., Opt. Express 27, 32427–32444 (2019)

    Article  ADS  Google Scholar 

  40. G.S. Agarwal, S. Huang, Phys. Rev. A 93, 043844 (2016)

    Article  ADS  Google Scholar 

  41. C.W. Gardiner et al., Phys. Rev. Lett. 11, 103044 (2009)

    Google Scholar 

  42. V. Giovannetti, D. Vitali, Phys. Rev. A 63, 023812 (2001)

    Article  ADS  Google Scholar 

  43. C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, Berlin, 2004), p.71

    Google Scholar 

  44. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  45. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Nature 460, 724–727 (2009)

    Article  ADS  Google Scholar 

  46. E.X. DeJesus, C. Kaufman, Phys. Rev. A 35, 5288 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  47. D. Vitali et al., Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  48. M.B. Plenio, Phys. Rev. Lett. 95, 090503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  49. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  50. G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. Lett. 92, 087901 (2004)

    Article  ADS  Google Scholar 

  51. F.M. Cucchietti et al., Phys. Rev. Lett. 91, 210403 (2003)

    Article  ADS  Google Scholar 

  52. Z. Ficek, R. Tanaś, Phys. Rev. A 74, 024304 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Mohamed Amazioug.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabar, N., Amghar, M., Amazioug, M. et al. Enhancement of mirror–mirror entanglement with intracavity squeezed light and squeezed-vacuum injection. Eur. Phys. J. D 78, 33 (2024). https://doi.org/10.1140/epjd/s10053-024-00825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00825-7

Navigation