Log in

A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures

  • Research Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A parametric study of microwave argon plasma assisted combustion (PAC) of premixed ethylene/air mixtures was carried out using visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy as diagnostic tools. The parameters investigated included the plasma feed gas flow rate, the plasma power, the fuel equivalence ratio and the total flow rate of the fuel/air mixture. The combustion enhancement effects were characterized by the minimum ignition power, the flame length and the fuel efficiency of the combustor. It was found that: (1) increasing the plasma feed gas flow rate resulted in a decrease in the flame length, an increase in the minimum ignition power for near stoichiometric fuel equivalence ratios and a corresponding decrease in the minimum ignition power for ultra-lean and rich fuel equivalence ratios; (2) at a constant plasma power, increasing the total flow rate of the ethylene/air mixture from 1.0 slm to 1.5 slm resulted in an increase in the flame length and a reduction in the fuel efficiency; (3) increasing the plasma power resulted in a slight increase in flame length as well as improved fuel efficiency with fewer C2(d) and CH(A) radicals present downstream of the flame; (4) increasing the fuel equivalence ratio caused an increase in flame length but at a reduced fuel efficiency when plasma power was kept constant; and (5) the ground state OH(X) number density was on the order of 1015 molecules/cm3 and was observed to drop downstream along the propagation axis of the flame at all parameters investigated. Results suggest that each of the parameters independently influences the PAC processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B.J. Michael, T.L.T. Chang, R.R.B. Miles, Combust. Flame 160, 796 (2013)

    Article  Google Scholar 

  2. W. Wu, C.A. Fuh, C. Wang, Combust. Sci. Technol. 187, 999 (2015)

    Article  Google Scholar 

  3. K.W. Hemawan, C.L. Romel, S. Zuo, I.S. Wichman, T.A. Grotjohn, J. Asmussen, Appl. Phys. Lett. 89, 141501 (2006)

    Article  ADS  Google Scholar 

  4. C.A. Fuh, W. Wu, C. Wang, J. Phys. D: Appl. Phys. 49, 285202 (2016)

    Article  Google Scholar 

  5. W. Kim, H. Do, M.G. Mungal, M.A. Cappelli, in 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno (2006)

  6. M.G. De Giorgi, A. Sciolti, S. Campilongo, E. Pescini, A. Ficarella, S. Lovascio, G. Dilecce, IEEE Sens. J. 16, 3896 (2016)

    Article  Google Scholar 

  7. J.P. Moeck, D.A. Lacoste, D. Durox, T.F. Guiberti, T. Schuller, C.O. Laux, IEEE Trans. Plasma Sci. 42, 2412 (2014)

    Article  ADS  Google Scholar 

  8. Z. Yin, I. Adamovich, in 49th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., Orlando (2011)

  9. J.B. Liu, J. Sinibaldi, C. Brophy, A. Kuthi, C. Jiang, P. Ronney, M.A. Gundersen, IEEE Trans. Plasma Sci. 33, 844 (2005)

    Article  ADS  Google Scholar 

  10. S. Nagaraja, W. Sun, V. Yang, Proc. Combust. Inst. 35, 3497 (2014)

    Article  Google Scholar 

  11. R.A. Varella, J.C. Sagás, C.A. Martins, Fuel 184, 269 (2016)

    Article  Google Scholar 

  12. T. Yamamoto, T. Tsuboi, Y. Iwama, R. Tanaka, Energy Fuels 30, 3495 (2016)

    Article  Google Scholar 

  13. J. Hwang, C. Bae, J. Park, W. Choe, J. Cha, Combust. Flame 167, 86 (2016)

    Article  Google Scholar 

  14. A. Bao, Y.G. Utkin, S. Keshav, G. Lou, I.V. Adamovich, IEEE Trans. Plasma Sci. 35, 1628 (2007)

    Article  ADS  Google Scholar 

  15. N. Chintala, A. Bao, G. Lou, I.V. Adamovich, Combust. Flame 144, 744 (2006)

    Article  Google Scholar 

  16. N. Ezumi, K. Akahane, K. Sawada, Y. Tanaka, M. Tanaka, T. Uda, K. Nishimura, Plasma Fusion Res. 7, 2401075 (2012)

    Article  ADS  Google Scholar 

  17. W. Wu, C.A. Fuh, C. Wang, IEEE Trans. Plasma Sci. 43, 3986 (2015)

    Article  ADS  Google Scholar 

  18. C. Fuh, W. Wu, C. Wang, in 45th AIAA Plasmadynamics and Lasers Conference, Atlanta (2014)

  19. W. Sun, Y. Ju, J. Plasma Fusion Res. 89, 208 (2013)

    Google Scholar 

  20. A. Starikovskiy, in 31st ICPIG, Grenada (2013)

  21. A. Starikovskiy, N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013)

    Article  Google Scholar 

  22. C. Wang, J. Anal. At. Spectrom. 22, 1347 (2007)

    Article  Google Scholar 

  23. C. Wang, W. Wu, J. Phys. D: Appl. Phys. 46, 464008 (2013)

    Article  ADS  Google Scholar 

  24. N. Srivastava, C. Wang, IEEE Trans. Plasma Sci. 39,918 (2011)

    Article  ADS  Google Scholar 

  25. C.A. Fuh, S.M. Clark, W. Wu, C. Wang, J. Appl. Phys. 120, 16330 (2016)

    Article  Google Scholar 

  26. D.J. **, H.S. Uhm, G. Cho, Phys. Plasmas 20, 83513 (2013)

    Article  Google Scholar 

  27. S. Hammack, T. Lee, C. Carter, IEEE Trans. PlasmaSci. 40, 3139 (2012)

    Article  ADS  Google Scholar 

  28. H.N. Najm, P.H. Paul, C.J. Mueller, P.S. Wyckoff, Combust. Flame 113, 312 (1998)

    Article  Google Scholar 

  29. Y. Ikeda, H. Nishihara, T. Nakajima, Trans. J. Engines 724 (2001)

  30. P. Bruggeman, D.C. Schram, Plasma Sources Sci. Technol. 19, 45025 (2010)

    Article  Google Scholar 

  31. N. Srivastava, C. Wang, J. Appl. Phys. 110, 53304 (2011)

    Article  ADS  Google Scholar 

  32. I. Glassman, R.A. Yetter, Combustion, 4th edn. (Academic Press, 2008)

  33. J. Grebe, K.H. Homann, Ber. Bunsenges. Phys. Chem. 86, 587 (1982)

    Article  Google Scholar 

  34. G.P. Smith, C. Park, J. Schneiderman, J. Luque, Combust. Flame 141, 66 (2005)

    Article  Google Scholar 

  35. J.L. Jauberteau, I. Jauberteau, M.J. Cinelli, J. Aubreton, New J. Phys. 4, 39 (2002)

    Article  ADS  Google Scholar 

  36. J. Luque, D.R. Crosley, LIFBASE: Database and spectral simulation (version 1.5), SRI International Report MP 99-009, 1999

  37. A. Goldman, J.R. Gillis, J. Quant. Spectrosc. Radiat. Transf. 25, 111 (1981)

    Article  ADS  Google Scholar 

  38. C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Plasma Sources Sci. Technol. 12, 125 (2003)

    Article  ADS  Google Scholar 

  39. G.D. Stancu, F. Kaddouri, D.A. Lacoste, C.O. Laux, J. Phys. D: Appl. Phys. 43, 124002 (2010)

    Article  ADS  Google Scholar 

  40. W. Sun, S.H. Won, T. Ombrello, C. Carter, Y. Ju, Proc. Combust. Inst. 34, 847 (2013)

    Article  Google Scholar 

  41. K.V. Artem’ev, S.Y. Kazantsev, N.G. Kononov, I.A. Kossyi, N.I. Malykh, N.A. Popov, N.M. Tarasova, E.A. Filimonova, K.N. Firsov, J. Phys. D: Appl. Phys. 46, 55201 (2013)

    Article  ADS  Google Scholar 

  42. C. Wang, W. Wu, Combust. Flame 161, 2073 (2014)

    Article  Google Scholar 

  43. S. Nagaraja, V. Yang, Z. Yin, I. Adamovich, Combust. Flame 161, 1026 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuji Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuh, C.A., Wu, W. & Wang, C. A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures. Eur. Phys. J. D 71, 302 (2017). https://doi.org/10.1140/epjd/e2017-80259-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80259-6

Keywords

Navigation