Log in

Impact of information adoption and the resulted self-protective actions on epidemic spreading in awareness-disease coupled multiplex networks

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

During the awareness-epidemic coupled spreading process, the self-protective actions resulted from information adoption can help to change the actual infection rate. In this paper, a UAPU-SEIR model is proposed by incorporating the impacts of information adoption and the resulting self-protective actions on epidemic transmission. Motivated by information adoption which greatly affects individuals’ subsequent behaviors, a new state abbreviated as P is introduced into the traditional unaware-aware-unaware model to describe the preventive action taken state after information adoption. Importantly, the infection rate of P-state individuals is closely related to information adoption probability. The Microscopic Markov Chain Approach (MMCA) is used to theoretically analyze the presented model and derive the outbreak threshold of epidemic. Simulation results suggest that under small epidemic infection rate, the proposed model significantly suppresses epidemic spreading speed and size, and results in higher epidemic threshold. Whereas, greater information adoption rate is needed to inhibit epidemic dissemination for increased infection rate. Besides, under the impact of information adoption and the resulted self-protective behaviors, accelerating information diffusion is able to both inhibit epidemic transmission and raise epidemic threshold. Current findings provide us a better understanding for the prevention and controlling of real infectious disease.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data.

The networks data that support the findings of this study are available through the corresponding references [37, 38].

References

  1. S. Funk, E. Gilad, V.A. Jansen, Endemic disease, awareness, and local behavioural response. J. Theor. Biol. 264, 501–509 (2010). https://doi.org/10.1016/j.jtbi.2010.02.032

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Funk, E. Gilad, C. Watkins, V.A. Jansen, The spread of awareness and its impact on epidemic outbreaks. Proc. Natl. Acad. Sci. 106, 6872–6877 (2009). https://doi.org/10.1073/pnas.0810762106

    Article  ADS  Google Scholar 

  3. V. Tangcharoensathien, N. Calleja, T. Nguyen, T. Purnat, M. D’Agostino, S. Garcia-Saiso, S. Briand, Framework for managing the covid-19 infodemic: methods and results of an online, crowdsourced who technical consultation. J. Medical Internet Res. 22, 19659 (2020). https://doi.org/10.2196/19659

    Article  Google Scholar 

  4. N. Ferguson, Capturing human behaviour. Nature 446, 733–733 (2007)

    Article  ADS  Google Scholar 

  5. Z. Wang, M.A. Andrews, Z.X. Wu, L. Wang, C.T. Bauch, Coupled disease-behavior dynamics on complex networks: A review. Phys. Life Rev. 15, 1–29 (2015). https://doi.org/10.1016/j.plrev.2015.07.006

    Article  ADS  Google Scholar 

  6. D.M. De, C. Granell, M.A. Porter, A. Arenas, The physics of spreading processes in multilayer networks. Nat. Phys. 12, 901–906 (2016). https://doi.org/10.1038/nphys3865

    Article  Google Scholar 

  7. A.M. Syed, L. Hjarnó, R. Krumkamp, R. Reintjes, A.R. Aro, Develo** policy options for sars and sars-like diseases-a delphi study. Glob. Public Health 5, 663–675 (2010). https://doi.org/10.1080/17441690903473220

    Article  Google Scholar 

  8. L.O. Gostin, E.A. Friedman, A retrospective and prospective analysis of the west african ebola virus disease epidemic: robust national health systems at the foundation and an empowered who at the apex. The Lancet 385, 1902–1909 (2015). https://doi.org/10.1016/S0140-6736(15)60644-4

    Article  Google Scholar 

  9. W.H. Organization, et al.: Coronavirus disease 2019 (covid-19): situation report (2020)

  10. X. Chen, B.Y. Liao, L. Cheng, X. Peng, X. Xu, Y. Li, B. Ren, The microbial coinfection in covid-19. Appl. Microbiol. Biotechnol. 104, 7777–7785 (2020). https://doi.org/10.1007/s00253-020-10814-6

    Article  Google Scholar 

  11. S. Baloch, M.A. Baloch, T. Zheng, X. Pei, The coronavirus disease 2019 (covid-19) pandemic. Tohoku J. Exp. Med. 250, 271–278 (2020). https://doi.org/10.1620/tjem.250.271

    Article  Google Scholar 

  12. K. Dhama, S. Khan, R. Tiwari, S. Sircar, S. Bhat, Y.S. Malik, A.J. Rodriguez-Morales, Coronavirus disease 2019-covid-19. Clin. Microbiol. Rev. 33, 10–1128 (2020)

    Article  Google Scholar 

  13. Z. Hu, Q. Cui, J. Han, X. Wang, E.I. Wei, Z. Teng, Evaluation and prediction of the covid-19 variations at different input population and quarantine strategies, a case study in guangdong province, china. Int. J. Infect. Dis. 95, 231–240 (2020). https://doi.org/10.1016/j.ijid.2020.04.010

    Article  Google Scholar 

  14. L. Wang, J. Wang, H. Zhao, Y. Shi, K. Wang, P. Wu, L. Shi, Modelling and assessing the effects of medical resources on transmission of novel coronavirus (covid-19) in wuhan, china. Math. Biosci. Eng. 17, 2936–2949 (2020). https://doi.org/10.3934/mbe.2020165

    Article  MathSciNet  Google Scholar 

  15. Statistical physics of vaccination, Wang, Z. and Bauch, C.T. and Bhattacharyya, S. and d’Onofrio, A. and Manfredi, P. and Perc, M., ... and Zhao, D. Phys. Rep. 664, 1–113 (2016). https://doi.org/10.1016/j.physrep.2016.10.006

    Article  MathSciNet  Google Scholar 

  16. Q. Sun, Z. Wang, D. Zhao, C. **a, M. Perc, Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes. Chaos, Solitons & Fractals 164, 112734 (2022). https://doi.org/10.1016/j.chaos.2022.112734

    Article  MathSciNet  Google Scholar 

  17. S. Samanta, S. Rana, A. Sharma, A.K. Misra, J. Chattopadhyay, Effect of awareness programs by media on the epidemic outbreaks: A mathematical model. Appl. Math. Comput. 219, 6965–6977 (2013). https://doi.org/10.1016/j.amc.2013.01.009

    Article  MathSciNet  Google Scholar 

  18. Z.K. Zhang, C. Liu, X.X. Zhan, X. Lu, C.X. Zhang, Y.C. Zhang, Dynamics of information diffusion and its applications on complex networks. Phys. Rep. 651, 1–34 (2016). https://doi.org/10.1016/j.physrep.2016.07.002

    Article  ADS  MathSciNet  Google Scholar 

  19. Z.S. Wang, Q.T. Guo, S.W. Sun, C. **a, The impact of awareness diffusion on sir-like epidemics in multiplex networks. Appl. Math. Comput. 349, 134–147 (2019). https://doi.org/10.1016/j.amc.2018.12.045

    Article  MathSciNet  Google Scholar 

  20. C. Granell, S. Gómez, A. Arenas, Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013). https://doi.org/10.1103/PhysRevLett.111.128701

    Article  ADS  Google Scholar 

  21. C. Granell, S. Gómez, A. Arenas, Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E 90, 012808 (2014). https://doi.org/10.1103/PhysRevE.90.012808

    Article  ADS  Google Scholar 

  22. Q. Guo, X. Jiang, Y. Lei, M. Li, Y. Ma, Z. Zheng, Two-stage effects of awareness cascade on epidemic spreading in multiplex networks. Phys. Rev. E 91, 012822 (2015). https://doi.org/10.1103/PhysRevE.91.012822

    Article  ADS  Google Scholar 

  23. W. Wang, Q.H. Liu, S.M. Cai, M. Tang, L.A. Braunstein, H.E. Stanley, Suppressing disease spreading by using information diffusion on multiplex networks. Phys. Rep. 6, 29259 (2016). https://doi.org/10.1038/srep29259

    Article  Google Scholar 

  24. C. Zheng, C. **a, Q. Guo, M. Dehmer, Interplay between sir-based disease spreading and awareness diffusion on multiplex networks. J Parallel Distrib. Comput. 115, 20–28 (2018). https://doi.org/10.1016/j.jpdc.2018.01.001

    Article  Google Scholar 

  25. C. **a, Z. Wang, C. Zheng, Q. Guo, Y. Shi, M. Dehmer, Z. Chen, A new coupled disease-awareness spreading model with mass media on multiplex networks. Inf. Sci. 471, 185–200 (2019). https://doi.org/10.1016/j.ins.2018.08.050

    Article  ADS  MathSciNet  Google Scholar 

  26. Z.S. Wang, C.Y. **a, Co-evolution spreading of multiple information and epidemics on two-layered networks under the influence of mass media. Nonlinear Dyn. 102, 3039–3052 (2020). https://doi.org/10.1007/s11071-020-06021-7

    Article  Google Scholar 

  27. Z. Wang, C. **a, Z. Chen, G. Chen, Epidemic propagation with positive and negative preventive information in multiplex networks. IEEE Trans. Cybern 51(3), 1454–1462 (2020). https://doi.org/10.1109/TCYB.2019.2960605

    Article  Google Scholar 

  28. J. Wu, R. Zuo, C. He, H. **ong, K. Zhao, Z. Hu, The effect of information literacy heterogeneity on epidemic spreading in information and epidemic coupled multiplex networks. Phys. A 596, 127119 (2022). https://doi.org/10.1016/j.physa.2022.127119

    Article  Google Scholar 

  29. J. Fan, Q. Yin, C. **a, M. Perc, Epidemics on multilayer simplicial complexes. P. ROY. SOC. A 478(2261), 20220059 (2022). https://doi.org/10.1098/rspa.2022.0059

  30. C.-M.K. Cheung, M.-K.O. Lee, N. Rabjohn, The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities. Internet Res. 18, 229–247 (2008). https://doi.org/10.1108/10662240810883290

    Article  Google Scholar 

  31. E. Massaro, F. Bagnoli, Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method. Phys. Rev. E 90, 052817 (2014). https://doi.org/10.1051/proc/201549005

    Article  ADS  Google Scholar 

  32. L. Danon, A.P. Ford, T. House, C.P. Jewell, M.J. Keeling, G.O. Roberts, M.C. Vernon, Networks and the epidemiology of infectious disease. Interdiscip Perspect Infect. Dis. 2011, 5896 (2011). https://doi.org/10.1155/2011/284909

  33. J.K. Matt, R. Pejman, Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008). https://doi.org/10.1086/591197

  34. S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, Y. Moreno, Discrete-time markov chain approach to contact-based disease spreading in complex networks. EPL 89, 38009 (2010). https://doi.org/10.1209/0295-5075/89/38009

    Article  ADS  Google Scholar 

  35. S. Gómez, J. Gómez-Gardenes, Y. Moreno, A. Arenas, Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks. Phys. Rev. E 84, 036105 (2011). https://doi.org/10.1103/PhysRevE.84.036105

    Article  ADS  Google Scholar 

  36. M. Boguná, C. Castellano, R. Pastor-Satorras, Langevin approach for the dynamics of the contact process on annealed scale-free networks. Phys. Rev. E 79, 036110 (2009). https://doi.org/10.1103/PhysRevE.79.036110

    Article  ADS  MathSciNet  Google Scholar 

  37. T. Britton, M. Deijfen, A. Martin-Löf, Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124, 1377–1397 (2006). https://doi.org/10.1007/s10955-006-9168-x

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Catanzaro, M. Boguná, R. Pastor-Satorras, Generation of uncorrelated random scale-free networks. Phys. Rev. E 71(2), 027103 (2005). https://doi.org/10.1103/PhysRevE.71.027103

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by (i) Project supported by the National Natural Science Foundation of China (Grant No. 62366028); (ii) Gansu Provincial Science and Technology Plan Project, China (Grant No. 21ZD8RA008); (iii) Project supported by the Natural Science Foundation of Gansu Province, China (Grant No. 23JRRA1688); (iv) The Support Project for Youth Doctor in Colleges and Universities of Gansu Province (Grant No. 2023QB-038); (v) The Science and Technology Plan Project of Lanzhou City (Grant No. 2021-1-150).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.-Y.P.; methodology, H.-Y.P. and Y.D.; software, G.-H.Y. and Y.D.; validation, H.-Y.P. and Y.D.; writing-original draft, G.-H.Y.; writing-review and editing, H.-Y.P. and Y.D.. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Huayan Pei.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, H., Ding, Y. & Yan, G. Impact of information adoption and the resulted self-protective actions on epidemic spreading in awareness-disease coupled multiplex networks. Eur. Phys. J. B 97, 52 (2024). https://doi.org/10.1140/epjb/s10051-024-00693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00693-5

Navigation