Log in

Transverse-momentum-dependent fragmentation functions in e+e- annihilation

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Fragmentation functions are non-perturbative functions used to describe the formation of colorless, observable hadrons starting from a colored, partonic initial state. The knowledge of these functions are based on the experimental data, and a good parameterization of the fragmentation processes can shed light on the confining aspect of QCD, and are also a key ingredient in accessing nucleon parton distribution functions in semi-inclusive deep inelastic scattering and proton-proton collisions. In the last decade, a strong interest has risen about the transverse-momentum-dependent (TMD) fragmentation functions, which can be used as tools to probe the 3D-structure of nucleons, and to investigate the Q2 evolution of TMD objects. In this review we will summarize the existing light-quarks fragmentation related measurements from the BaBar, Belle, and BESIII e + e - experiments; in particular, we will focus on the polarized TMD Collins fragmentation functions, emerging from correlations between the transverse polarization of the fragmenting parton and the direction of the resulting hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Collins, D.E. Soper, G.F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1988)

    Article  Google Scholar 

  2. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics (Cambridge Books Online - Cambridge University Press, 1996)

  3. J. Collins, Nucl. Phys. B 396, 161 (1993)

    Article  ADS  Google Scholar 

  4. A. Bacchetta, U. D’Alesio, M. Diehl, C.A. Miller, Phys. Rev. D 70, 117504 (2004)

    Article  ADS  Google Scholar 

  5. K. Abe et al., Phys. Rev. Lett. 96, 232002 (2006)

    Article  ADS  Google Scholar 

  6. R. Seidl et al., Phys. Rev. D 78, 032011 (2008)

    Article  ADS  Google Scholar 

  7. R. Seidl et al., Phys. Rev. D 86, 039905 (2012)

    Article  ADS  Google Scholar 

  8. J.P. Lees et al., Phys. Rev. D 90, 052003 (2014)

    Article  ADS  Google Scholar 

  9. M. Ablikim et al., Phys. Rev. Lett. 116, 042001 (2016)

    Article  ADS  Google Scholar 

  10. A. Airapetian et al., Phys. Rev. Lett. 94, 012002 (2005)

    Article  ADS  Google Scholar 

  11. A. Airapetian et al., Phys. Lett. B 693, 11 (2010)

    Article  ADS  Google Scholar 

  12. C. Adolph et al.., Phys. Lett. B 744, 250 (2015)

    Article  ADS  Google Scholar 

  13. M.G. Alekseev et al., Phys. Lett. B 692, 240 (2010)

    Article  ADS  Google Scholar 

  14. M. Alekseev et al., Phys. Lett. B 673, 127 (2009)

    Article  ADS  Google Scholar 

  15. E.S. Ageev et al., Nucl. Phys. B 765, 31 (2007)

    Article  ADS  Google Scholar 

  16. C. Adolph et al., Phys. Lett. B 717, 376 (2012)

    Article  ADS  Google Scholar 

  17. B. Aubert et al., Nucl. Instrum. Methods A 729, 615 (2013)

    Article  ADS  Google Scholar 

  18. A. Abashian et al., Nucl. Instrum. Methods A 479, 117 (2002)

    Article  ADS  Google Scholar 

  19. S. Albino, B. Kniehl, G. Kramer, Nucl. Phys. B 803, 42 (2008)

    Article  ADS  Google Scholar 

  20. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 75, 114010 (2007)

    Article  ADS  Google Scholar 

  21. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 76, 074033 (2007)

    Article  ADS  Google Scholar 

  22. D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto, M. Stratmann, Phys. Rev. D 91, 014035 (2015)

    Article  ADS  Google Scholar 

  23. K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  24. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, JHEP 01, 010 (2001)

    Article  ADS  Google Scholar 

  25. T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  26. S. Chun, C. Buchanan, Phys. Rep. 292, 239 (1998)

    Article  ADS  Google Scholar 

  27. R. Seuster et al., Phys. Rev. D 73, 032002 (2006)

    Article  ADS  Google Scholar 

  28. B. Aubert et al., Phys. Rev. D 75, 012003 (2007)

    Article  ADS  Google Scholar 

  29. B. Aubert et al., Phys. Rev. Lett. 99, 062001 (2007)

    Article  ADS  Google Scholar 

  30. J.P. Lees et al., Phys. Rev. D 88, 032011 (2013)

    Article  ADS  Google Scholar 

  31. E. Farhi, Phys. Rev. Lett. 39, 1587 (1977)

    Article  ADS  Google Scholar 

  32. D. Boutigny, The BaBar physics book: Physics at an asymmetric $B$ factory, in Workshop on Physics at an Asymmetric B Factory (BaBar Collaboration Meeting) Pasadena, California, September 22-24, 1997, SLAC-R-0504 report (1998)

  33. M. Leitgab et al., Phys. Rev. Lett. 111, 062002 (2013)

    Article  ADS  Google Scholar 

  34. http://link.aps.org/supplemental/10.1103/ PhysRevLett.111.062002 (Supplemental Material)

  35. S. Kretzer, Phys. Rev. D 62, 054001 (2000)

    Article  ADS  Google Scholar 

  36. B. Kniehl, G. Kramer, B. Ptter, Nucl. Phys. B 582, 514 (2000)

    Article  ADS  Google Scholar 

  37. S. Albino, B. Kniehl, G. Kramer, Nucl. Phys. B 725, 181 (2005)

    Article  ADS  Google Scholar 

  38. M. Hirai, S. Kumano, T.H. Nagai, K. Sudoh, Phys. Rev. D 75, 094009 (2007)

    Article  ADS  Google Scholar 

  39. M. Hirai, S. Kumano, T.H. Nagai, M. Oka, K. Sudoh, Global analysis of hadron-production data in $e^+e^-$ annihilation for determining fragmentation functions, in Nuclear Physics Proceedings, 23rd International Conference, INPC 2007, Tokyo, Japan, June 3-8, 2007, ar**v:0709.2457

  40. M. Epele, R. Llubaroff, R. Sassot, M. Stratmann, Phys. Rev. D 86, 074028 (2012)

    Article  ADS  Google Scholar 

  41. C.A. Aidala, F. Ellinghaus, R. Sassot, J.P. Seele, M. Stratmann, Phys. Rev. D 83, 034002 (2011)

    Article  ADS  Google Scholar 

  42. http://research.kek.jp/people/kumanos/ffs.html

  43. A. Airapetian et al., Phys. Rev. D 87, 074029 (2013)

    Article  ADS  Google Scholar 

  44. C. Adolph et al., Eur. Phys. J. C 73, 2531 (2013)

    Article  ADS  Google Scholar 

  45. R.L. Jaffe, Can transversity be measured? in Deep inelastic scattering off polarized targets: Theory meets experiment. Physics with polarized protons at HERA, SPIN`97 Proceedings, Germany, 1997, hep-ph/9710465

  46. D. Boer, Nucl. Phys. B 806, 23 (2009)

    Article  ADS  Google Scholar 

  47. T. Sjostrand, PYTHIA 5.7 and JETSET 7.4: Physics and manual, hep-ph/9508391 (1995)

  48. T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Commun. 135, 238 (2001)

    Article  ADS  Google Scholar 

  49. Z.B. Kang, A. Prokudin, P. Sun, F. Yuan, Extraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD Evolution, ar**v:1505.05589 (2015)

  50. M. Ablikim et al., Nucl. Instrum. Methods A 614, 345 (2010)

    Article  ADS  Google Scholar 

  51. P. Sun, F. Yuan, Phys. Rev. D 88, 034016 (2013)

    Article  ADS  Google Scholar 

  52. J.P. Lees et al., Phys. Rev. D 92, 111101 (2015)

    Article  ADS  Google Scholar 

  53. A. Bacchetta, L.P. Gamberg, G.R. Goldstein, A. Mukherjee, Phys. Lett. B 659, 234 (2008)

    Article  ADS  Google Scholar 

  54. M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, C. Turk, Phys. Rev. D 75, 054032 (2007)

    Article  ADS  Google Scholar 

  55. M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, S. Melis, Nucl. Phys. B - Proc. Suppl. 191, 98 (2009) Proceedings of the Ringberg WorkshopNew Trends in \HERA\

    Article  ADS  Google Scholar 

  56. M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia et al., Phys. Rev. D 87, 094019 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Garzia.

Additional information

Communicated by P. Rossi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garzia, I., Giordano, F. Transverse-momentum-dependent fragmentation functions in e+e- annihilation. Eur. Phys. J. A 52, 152 (2016). https://doi.org/10.1140/epja/i2016-16152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16152-8

Navigation