Log in

Effects of single-particle potentials on the level density parameter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The new definition of the energy dependence for the level density parameter including collective effects depends strongly on the semi-classical approach. For this method, defining an accurate single-particle potential is of great importance. The effect of the single-particle potential terms, which are central, spin-orbit, harmonic oscillator, Woods-Saxon and Coulomb potential, both for spherical and deformed cases, on the level density parameter was investigated by examining the local success of the global parameterizations of eight different combinations of these terms. Among these combinations, the sum of the central, spin-orbit, harmonic oscillator and Coulomb potentials, gives the most accurate predictions compared with experimental data. The local selections of the global parameterizations show that the single-particle models, which are based on the Woods-Saxon potential as the main term, are more suitable candidates than the models based on harmonic oscillator potential to extrapolate away far from stability. Also it can be concluded that the contribution of the Coulomb interaction, both around the closed and open shells is not neglectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata, H. Hamakagi, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).

    Article  ADS  Google Scholar 

  2. G.R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford, 1983).

  3. T. Tamura, Rev. Mod. Phys. 37, 679 (1965).

    Article  ADS  Google Scholar 

  4. W. Tobocman, M.H. Kalos, Phys. Rev. 97, 132 (1955).

    Article  ADS  Google Scholar 

  5. G.H. Rawitscher, Phys. Rev. C 9, 2210 (1974).

    Article  ADS  Google Scholar 

  6. Y. Sakuragi, M. Yahiro, M. Kamimura, Prog. Theor. Phys. 68, 322 (1982).

    Article  ADS  Google Scholar 

  7. Y. Sakuragi, M. Yahiro, M. Kamimura, Prog. Theor. Phys. Suppl. 89, 136 (1986).

    Article  ADS  Google Scholar 

  8. Y. Yamagata, K. Yuasa, N. Inabe, M. Nakamura, M. Tanaka, S. Nakayama, K. Katori, M. Inoue, S. Kubono, T. Itahashi, H. Ogata, Y. Sakuragi, Phys. Rev. C 39, 873 (1989).

    Article  ADS  Google Scholar 

  9. B. Sinha, Phys. Rep. 20, 1 (1975).

    Article  ADS  Google Scholar 

  10. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  11. V. Lapoux et al., Phys. Lett. B 658, 198 (2008).

    Article  ADS  Google Scholar 

  12. B. Canbula, R. Bulur, D. Canbula, H. Babacan, Nucl. Phys. A 929, 54 (2014).

    Article  ADS  Google Scholar 

  13. B. Canbula, H. Babacan, Nucl. Phys. A 858, 32 (2011).

    Article  ADS  Google Scholar 

  14. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).

    Article  ADS  Google Scholar 

  15. H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937).

    Article  ADS  MATH  Google Scholar 

  16. H. Hagelund, A.S. Jensen, Phys. Scr. 15, 225 (1977).

    Article  ADS  Google Scholar 

  17. A.V. Ignatyuk, The Statical Properties of the Excited Atomic Nuclei (Energoatomizdat, Moscow, 1983).

  18. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966).

    Article  Google Scholar 

  19. A. Mengoni, Y. Nakajima, J. Nucl. Sci. Techmol. 31, 151 (1994).

    Article  Google Scholar 

  20. D.J. Rowe, Nuclear Collective Motion (Methuen, London, 1970).

  21. K.S. Krane, Introductory Nuclear Physics (John Wiley and Sons Inc., 1987).

  22. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, 1980).

  23. K. Siegbahn, Alpha-, Beta- and Gamma-Ray Spectroscopy (North-Holland, 1965).

  24. T. Ericson, Adv. Phys. 9, 425 (1960).

    Article  ADS  Google Scholar 

  25. J. Bartel, K. Pomorski, B. Nerlo-Pomorska, Int. J. Mod. Phys. E 15, 478 (2006).

    Article  ADS  Google Scholar 

  26. A.S. Il**ov, M.V. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A.R. Reolon, P. Rossi, Nucl. Phys. A 543, 517 (1992).

    Article  ADS  Google Scholar 

  27. A. Bohr, B.R. Mottelson, Nuclear Structure (W. A. Benjamin, Inc., 1998). .

  28. M. Brack, R.K. Bhaduri, Semiclassical Physics (Addison-Wesley Publishing Company, Inc., 1997).

  29. L. Salasnich, J. Math. Phys. 41, 8016 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. W. Greiner, J.A. Maruhn, Nuclear Models (Springer-Verlag, 1996).

  31. T. Bayram, S. Akkoyun, S.O. Kara, A. Sinan, Acta Phys. Pol. B 44, 1971 (2013).

    Article  Google Scholar 

  32. I. Angeli, K.P. Marinova, At. Nucl. Data Tables 99, 69 (2013).

    Article  ADS  Google Scholar 

  33. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975).

    Google Scholar 

  34. P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Canbula.

Additional information

Communicated by Bo-Qiang Ma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canbula, B., Bulur, R., Canbula, D. et al. Effects of single-particle potentials on the level density parameter. Eur. Phys. J. A 50, 178 (2014). https://doi.org/10.1140/epja/i2014-14178-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14178-6

Keywords

Navigation