Log in

Helicity dependence of the γ 3He → πX reactions in the Δ(1232) resonance region

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The helicity dependences of the differential cross sections for the semi-inclusive γ 3He → π0 X and γ 3He → π± X reactions have been measured for the first time in the energy region 200 < E γ 450 MeV. The experiment was performed at the tagged photon beam facility of the MAMI accelerator in Mainz using a longitudinally polarised high-pressure 3He gas target. Hadronic products were measured with the large-acceptance Crystal Ball detector complemented with additional devices for charged-particle tracking and identification. Unpolarised differential cross sections and their helicity dependence are compared with theoretical calculations using the Fix-Arenhövel model. The effect of the intermediate excitation of the Δ(1232) resonance can be clearly seen from this comparison, especially for the polarised case, where nuclear effects are relatively small. The model provides a better theoretical description of the unpolarised charged pion photoproduction data than the neutral pion channel. It does significantly better in describing the helicity-dependent data in both channels. These comparisons provide new information on the mechanisms involved in pion photoproduction on 3He and suggest that a polarised 3He target can provide valuable information on the corresponding polarised quasi-free neutron reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ahrens et al., Phys. Rev. Lett. 88, 232002 (2002).

    Article  ADS  Google Scholar 

  2. J. Ahrens et al., Eur. Phys. J. A 44, 189 (2010).

    Article  ADS  Google Scholar 

  3. W.J. Briscoe et al., Phys. Rev. C 86, 065207 (2013).

    Article  ADS  Google Scholar 

  4. P. Aguar Bartolomé et al., Phys. Lett. B 723, 71 (2013).

    Article  ADS  Google Scholar 

  5. H. Arenhövel, A. Fix, Phys. Rev. C 72, 064004 (2005).

    Article  ADS  Google Scholar 

  6. A. Fix, H. Arenhövel, Phys. Rev. C 72, 064005 (2005).

    Article  ADS  Google Scholar 

  7. H. Herminghaus et al., IEEE Trans. Nucl. Sci. 30, 3274 (1983).

    Article  ADS  Google Scholar 

  8. H. Kaiser et al., Nucl. Instrum. Methods A 593, 159 (2008).

    Article  ADS  Google Scholar 

  9. K. Aulenbacher et al., Nucl. Instrum. Methods A 391, 498 (1997).

    Article  ADS  Google Scholar 

  10. V. Tioukine, K. Aulenbacher, N. Riehn, Rev. Sci. Instrum. 82, 033303 (2011).

    Article  ADS  Google Scholar 

  11. I. Preobrajenski, PhD thesis, University of Mainz (2001).

  12. H. Olsen, L. Maximon, Phys. Rev. 114, 887 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  13. I. Anthony et al., Nucl. Instrum. Methods A 301, 230 (1991).

    Article  ADS  Google Scholar 

  14. S.J. Hall et al., Nucl. Instrum. Methods A 368, 698 (1996).

    Article  ADS  Google Scholar 

  15. J.C. McGeorge et al., Eur. Phys. J. A 37, 129 (2008).

    Article  ADS  Google Scholar 

  16. S. Schumann et al., Eur. Phys. J. A 43, 269 (2010).

    Article  ADS  Google Scholar 

  17. J. Krimmer et al., Nucl. Instrum. Methods A 648, 35 (2011).

    Article  ADS  Google Scholar 

  18. A. Starostin et al., Phys. Rev. C 64, 055205 (2001).

    Article  ADS  Google Scholar 

  19. D.P. Watts, Calorimetry in Particle Physics: Proceedings of the 11th International Conference (World Scientific, Singapore, 2005) p. 560.

  20. G. Audit et al., Nucl. Instrum. Methods A 301, 473 (1991).

    Article  ADS  Google Scholar 

  21. J. Ahrens et al., Phys. Lett. B 624, 173 (2005).

    Article  ADS  Google Scholar 

  22. F. Zehr et al., Eur. Phys. J. A 48, 98 (2012).

    Article  ADS  Google Scholar 

  23. D. Drechsel, S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007).

    Article  ADS  Google Scholar 

  24. J. Ahrens et al., Eur. Phys. J. A 34, 11 (2007).

    Article  ADS  Google Scholar 

  25. F. Carbonara et al., Nuovo Cimento A 36, 219 (1976).

    Article  ADS  Google Scholar 

  26. C. Ciofi degli Atti, S. Scopetta, Phys. Lett. B 404, 223 (1997).

    Article  ADS  Google Scholar 

  27. J.L. Friar et al., Phys. Rev. C 42, 2310 (1990).

    Article  ADS  Google Scholar 

  28. V. Baru et al., Eur. Phys. J. A 16, 437 (2003).

    Article  ADS  Google Scholar 

  29. C. Lazard, Z. Maric, Nuovo Cimento A 16, 605 (1973).

    Article  ADS  Google Scholar 

  30. C.A. Engelbrecht, Phys. Rev. 133, B988 (1964).

    Article  ADS  Google Scholar 

  31. J.M. Laget, Nucl. Phys. A 194, 81 (1972).

    Article  ADS  Google Scholar 

  32. M. Egorov, A. Fix, Phys. Rev. C 88, 054611 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to P. Pedroni.

Additional information

Communicated by P. Rossi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A2 Collaboration., Costanza, S., Mushkarenkov, A. et al. Helicity dependence of the γ 3He → πX reactions in the Δ(1232) resonance region. Eur. Phys. J. A 50, 173 (2014). https://doi.org/10.1140/epja/i2014-14173-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14173-y

Keywords

Navigation