Log in

Saturation of Bacterial Cellulose with Silymarin Flavolignans in the Composition of Lipid Nanoparticles

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Silymarin (SM) from Silybum marianum (L.) is a sum of flavolignans (silibinin, silychristin, silydianin, and isosilibinin), exhibiting a wide spectrum of biological activity and having anti-inflammatory, antitumor, hepatoprotective, immunomodulatory effects. Using a modified emulsion method with solvent evaporation, lipid nanoparticles with silymarin (LNP-SM) were obtained, the size of which was 257 ± 6 nm, and the ζ potential was –20.8 ± 1.6 mV. The efficiency of SM inclusion in the LNP-SM was 89.8%, the loading degree was 5.4%. The release of CM from the composition of the resulting nanoparticles was prolonged; after 48 h, only 68.3 ± 5.4% of the active substance was released into the dialysis medium. The dynamics of the inclusion/release of SM in the composition of LNP into the films of bacterial cellulose (BC) produced by the Gluconacetobacter hansenii GH-1/2008 strain has been studied. It was shown, that after 24 h of incubation the maximum of BC film saturation with SM reached 0.745 ± 0.038 mg/cm2, and the maximum release was 0.520 ± 0.041 mg/cm2. It was demonstrated that both LNP-SM sols and samples of BC saturated with LNP-SM exhibited low hemolytic activity, which indicates the potential biosafety of these preparations. The preparation LNP-SM, in contrast to free SM, exhibited fungistatic action against the fungi of A. niger and C. albicans. Both free SM and LNP-SM suppressed the growth of gram-positive bacteria; however, the effect of LNP-SM was much more effective. The minimum inhibitory concentration of the LNP-SM preparation for B. subtilis and B. coagulans was 105 and 210 μg/mL, respectively. The possibility of develo** biocompatible coating materials based on BC saturated with LNP-SM is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Gazák, D. Walterová, and V. Kren, Curr. Med. Chem. 14, 315 (2007). https://doi.org/10.2174/092986707779941159

    Article  Google Scholar 

  2. S. K. Manna, A. Mukhopadhyay, N. T. Van, and B. B. Aggarwal, J. Immunol. 163, 6800 (1999).

    CAS  Google Scholar 

  3. H. Basaga, G. Poli, C. Tekkaya, and I. Aras, Cell Biochem. Funct. 15, 27 (1997). https://doi.org/10.1002/(SICI)1099-0844(199703)15:1<27::AID-CBF714>3.0.CO;2-W

    Article  CAS  Google Scholar 

  4. N. Skottová and V. Krecman, Acta Univ. Palacki. Olomuc. Fac. Med. 141, 39 (1998).

    Google Scholar 

  5. C. H. Wu, S. M. Huang, and G. C. Yen, Antioxid. Redox Signal. 14, 353 (2011). https://doi.org/10.1089/ars.2010.3134

    Article  CAS  Google Scholar 

  6. Y. X. Wang, H. Cai, G. Jiang, et al., Asian Pacif. J. Cancer Prev. 15, 6791 (2014). https://doi.org/10.7314/apjcp.2014.15.16.6791

    Article  Google Scholar 

  7. S. M. Woo, K. J. Min, S. Kim, et al., Chem.-Biol. Interact. 211, 36 (2014). https://doi.org/10.1016/j.cbi.2014.01.004

    Article  CAS  Google Scholar 

  8. M. B. Pirouzpanah, M. Sabzichi, S. Pirouzpanah, et al., Asian Pacif. J. Cancer Prev. 16, 2087 (2015). https://doi.org/10.7314/apjcp.2015.16.5.2087

    Article  Google Scholar 

  9. A. Tyagi, C. Agarwal, G. Harrison, et al., Carcinogenesis 25, 1711 (2004). https://doi.org/10.1093/carcin/bgh180

    Article  CAS  Google Scholar 

  10. J. Féher and G. Lengyel, Curr. Pharm. Biotechnol. 13, 210 (2012). https://doi.org/10.2174/138920112798868818

    Article  Google Scholar 

  11. N. Vargas-Mendoza, E. Madrigal-Santillán, A. Morales-González, et al., World J. Hepatol. 6, 144 (2014). https://doi.org/10.4254/wjh.v6.i3.144

    Article  Google Scholar 

  12. P. R. Rao and R. K. Viswanath, Exp. Clin. Cardiol. 12, 179 (2007).

    CAS  Google Scholar 

  13. A. Borah, R. Paul, S. Choudhury, et al., CNS Neurosci. Ther. 19, 847 (2013). https://doi.org/10.1111/cns.12175

    Article  CAS  Google Scholar 

  14. M. Gharagozloo, M. Karimi, and Z. Amirghofran, Int. Immunopharmacol. 16, 243 (2013). https://doi.org/10.1016/j.intimp.2013.04.016

    Article  CAS  Google Scholar 

  15. N. Esmaeil, S. B. Anaraki, M. Gharagozloo, and B. Moayedi, Int. Immunopharmacol. 50, 194 (2017). https://doi.org/10.1016/j.intimp.2017.06.030

    Article  CAS  Google Scholar 

  16. D. G. Lee, H. K. Kim, Y. Park, et al., Arch. Pharm. Res. 26, 597 (2003). https://doi.org/10.1007/BF02976707

    Article  CAS  Google Scholar 

  17. A. di Costanzo and R. Angelico, Molecules 24, 2155 (2019). https://doi.org/10.3390/molecules24112155

    Article  CAS  Google Scholar 

  18. M. S. El-Samaligy, N. N. Afifi, and E. A. Mahmoud, Int. J. Pharm. 308, 140 (2006). https://doi.org/10.1016/j.ijpharm.2005.11.006

    Article  CAS  Google Scholar 

  19. N. B. Feldman, T. I. Gromovykh, N. E. Sedyakina, et al., BioNanoSci. 8, 971 (2018). https://doi.org/10.1007/s12668-018-0556-x

    Article  Google Scholar 

  20. N. Sun, X. Wei, B. Wu, et al., Powder Technol. 182, 72 (2008). https://doi.org/10.1016/j.powtec.2007.05.029

    Article  CAS  Google Scholar 

  21. S. Abrol, A. Trehan, and O. P. Katare, Drug Deliv. 11, 185 (2004). https://doi.org/10.1080/10717540490433958

    Article  CAS  Google Scholar 

  22. Y. P. Wu, M. R. Huo, and J. P. Zhou, Yaoxue Xuebao 44, 651 (2009).

    CAS  Google Scholar 

  23. S. Bhatt, J. Sharma, M. Singh, and V. Saini, Acta Pharm. Sci. 56 (3), 27 (2018). https://doi.org/10.23893/1307-2080.APS.05616

    Article  CAS  Google Scholar 

  24. M. Cengiz, H. M. Kutlu, D. D. Burukoglu, and A. Ayhancı, Food Chem. Toxicol. 77, 93 (2015). https://doi.org/10.1016/j.fct.2014.12.011

    Article  CAS  Google Scholar 

  25. J. Q. Zhang, J. Liu, X. L. Li, and B. R. Jasti, Drug Deliv. 14, 381 (2007). https://doi.org/10.1080/10717540701203034

    Article  CAS  Google Scholar 

  26. T. I. Gromovykh, V. S. Sadykova, S. V. Lutsenko, A. S. Dmitrenok, N. B. Feldman, T. N. Danilchuk, and V. V. Kashirin, Appl. Biochem. Microbiol. 53, 60 (2017). https://doi.org/10.1134/S0003683817010094

    Article  CAS  Google Scholar 

  27. K. Liu, J. Sun, Y. Wang, et al., Drug Dev. Ind. Pharm. 34, 465 (2008). https://doi.org/10.1080/03639040701662230

    Article  CAS  Google Scholar 

  28. X. Zhang, S. Lu, J. Han, et al., Pharmazie 66, 404 (2011). https://doi.org/10.1691/ph.2011.0350

    Article  CAS  Google Scholar 

  29. M. Elmowafy, T. Viitala, H. M. Ibrahim, et al., Eur. J. Pharm. Sci. 50, 161 (2013). https://doi.org/10.1016/j.ejps.2013.06.012

    Article  CAS  Google Scholar 

  30. M. Balouiri, M. Sadiki, and S. K. Ibnsouda, J. Pharm. Anal. 6, 71 (2016). https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  31. R. L. Garcia and A. G. Rondero, J. Chem. Dermatol. Sci. Appl. 5, 62 (2015). https://doi.org/10.4236/jcdsa.2015.52008

    Article  Google Scholar 

  32. P. Corchete, in Bioactive Nolecules and Nedicinal Plants, Ed. by K. Ramawat and J. Merillon (Springer, Berlin, 2008), p. 123. https://doi.org/10.1007/978-3-540-74603-4_6

    Book  Google Scholar 

  33. A. Q. Khan, R. Khan, M. Tahir, et al., Nutr. Cancer. 66, 249 (2014). https://doi.org/10.1080/01635581.2014.863365

    Article  CAS  Google Scholar 

  34. M. L. Dupuis, F. Conti, A. Maselli, et al., Front. Immunol. 9, 1903 (2018). https://doi.org/10.3389/fimmu.2018.01903

    Article  CAS  Google Scholar 

  35. A. Valenzuela, T. Barría, R. Guerra, and A. Garrido, Biochem. Biophys. Res. Commun. 126, 712 (1985). https://doi.org/10.1016/0006-291x(85)90243-8

    Article  CAS  Google Scholar 

  36. K. Amin and R. M. Dannenfelser, J. Pharm. Sci. 95, 1173 (2006). https://doi.org/10.1002/jps.20627

    Article  CAS  Google Scholar 

  37. D. R. de Oliveira, S. R. Tintino, M. F. Braga, et al., BioMed Res. Int., No. 292797 (2015). https://doi.org/10.1155/2015/292797

  38. D. G. Yun and D. G. Lee, IUBMB Life 69, 631 (2017). https://doi.org/10.1002/iub.1647

    Article  CAS  Google Scholar 

  39. D. G. Lee, H. K. Kim, and Y. Park, Arch. Pharm. Res. 26, 597 (2003). https://doi.org/10.1007/BF02976707

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a project to improve the competitiveness of leading Russian universities among the world's leading research and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Feldman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahman, M.R., Feldman, N.B., Orekhov, S.N. et al. Saturation of Bacterial Cellulose with Silymarin Flavolignans in the Composition of Lipid Nanoparticles. Nanotechnol Russia 16, 239–245 (2021). https://doi.org/10.1134/S2635167621020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621020038

Navigation