Log in

Influence of Unipolar Corona Discharge Parameters on the Efficiency of Separation of Oil–Water Emulsions by Cellulose Acetate Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The influence of the parameters of unipolar corona discharge (treatment time, voltage) on the productivity and selectivity of the separation of model Devonian oil-based oil-in-water emulsions using cellulose acetate (CA) membranes with a pore size of 0.2 μm has been studied. The concentrations of oil products in the model emulsion, actual formation water, and the filtrates were determined. The values of treatment time and membrane coronation voltage of 5 min and 15 kV, respectively, at which the highest flux of 20 dm3/(m2 h) and a 99.3% efficiency of removal of hydrocarbons from the oil–water emulsion are achieved, have been determined. The increase in flux is due to an increase in the porosity of the filters from 65.8 to 83.6%, and greater efficiency is achieved as a result of chemical restructuring of the membrane surface. By the sessile drop method, enhancement of the surface wettability of a CA filter treated with a corona discharge (U = 15 kV and τ = 5 min), viz., a decrease in the contact angle from 72.5° to 64.6°, has been revealed According to electrophoretic light scattering data, the filtrate of the modified membrane has a lower aggregative stability and contains smaller particles compared to the untreated filter. The efficiency of salinity reduction in the formation water using a membrane treated with a corona discharge at U = 15 kV and τ = 5 min was 99.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. A. Lazutkin, Molod. Uch. 16, 184 (2017).

    Google Scholar 

  2. Yu. R. Abdrakhimov, G. M. Sharafutdinova, R. I. Khangil’din, et al., Neftegaz. Delo 6, 222 (2011).

    Google Scholar 

  3. N. I. Posvyatenko, Yu. E. Demidova, and T. V. Mel’nik, Vest. Nats. Transport. Univ. 29, 250 (2014).

    Google Scholar 

  4. A. I. Guslavskii and Z. A. Kanarskaya, Vest. Kazan. Tekhnol. Univ. 20, 191 (2011).

    Google Scholar 

  5. M. M. Pendergast and E. M. V. Hoek, A Review of Water Treatment Membrane Nanotechnologies, Energy and Environmental Science (Los Angeles, 2011).

  6. X. Zeng, L. Qian, X. Yuan, et al., ACS Nano 11, 760 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. C. Zhou, J. Cheng, K. Hou, et al., Chem. Eng. J. 301, 249 (2016).

    Article  CAS  Google Scholar 

  8. O. G. Degtyareva, T. I. Safronova, and G. V. Degtyarev, Zh. Kuban. Gos. Agrar. Univ. 9, 64 (2005).

    Google Scholar 

  9. V. V. Varnakov, I. A. Busygin, and E. A. Shkalikov, Alleya Nauki 2, 897 (2018).

    Google Scholar 

  10. S. E. Plokhova, E. D. Sattarova, and A. A. Elpidinskii, Vest. Kazan. Tekhnol. Univ. 15, 39 (2012).

    Google Scholar 

  11. S. E. Plokhova, E. D. Sattarova, and A. A. Elpidinskii, Vest. Kazan. Tekhnol. Univ. 17, 274 (2014).

    CAS  Google Scholar 

  12. C. Chen, D. Weng, A. Mahmood, et al., ACS Appl. Mater. Interfaces 11, 110067 (2019).

    Google Scholar 

  13. Yu. K. Rubanov and Yu. E. Tokach, Vest. Tekhnol. Univ. 6, 246 (2015).

    Google Scholar 

  14. D. D. Fazullin, G. V. Mavrin, A. V. Savelyeva, et al., Int. J. Green Pharm. 4, 831 (2017).

    Google Scholar 

  15. O. G. Dubrovskaya, V. V. Evstigneev, and V. A. Kulagin, J. Sib. Fed. Univ. Eng. Technol. 6, 680 (2013).

    Google Scholar 

  16. M. Mulder, Basic Principles of Membrane Technology (Springer, 1996).

    Book  Google Scholar 

  17. M.-L. Pellegrin, S. Arabi, J. Aguinaldo, et al., Water Environ. Res. 10 (2017).

  18. M. Johnson, G. Greg Liddiard, M. Eddings, et al., J. Micromech. Microeng. 19, 1 (2009).

    Article  CAS  Google Scholar 

  19. V. P. Gavrilyuk and A. I. Konoplya, Usp. Sovr. Estestv. 10, 43 (2005).

    Google Scholar 

  20. L. E. Ermakova, I. A. Savina, and M. P. Sidorova, Vestnik SPbGU 1, 55 (2012).

    Google Scholar 

  21. I. Sh. Abdullin, E. S. Nefed’ev, R. G. Ibragimov, et al., Vest. Kazan. Tekhnol. Univ. 3, 21 (2012).

    Google Scholar 

  22. M. Kilgus, V. Gepert, N. Dinges, C. Merten, G. Eigenberger, and T. Schiestel, Desalination 95 (2006).

  23. A. G. Balandina, R. I. Khangil’din, I. G. Ibragimov, and V. A. Martyasheva, Neftegaz. Delo 5, 336 (2015).

    Google Scholar 

  24. W. Guo, H.-H. Ngo, and J. Li, Bioresour. Technol. 122, 27 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. J. Wang, Proceedings of the 4th IWA Regional Conference on Membrane Technology, Ho Chi Minh City, Vietnam, 2014.

  26. E. Filloux, J. Wang, M. Pidou, W. Gernjak, and Z. Yuan, J. Membr. Sci. 495, 276 (2015).

    Article  CAS  Google Scholar 

  27. G. D. Kang and Y. M. Cao, J. Membr. Sci. 463, 145 (2014).

    Article  CAS  Google Scholar 

  28. L. F. Dumee, L. He, and P. C. King, M. Le Moing, I. Guller, M. Duke, P. D. Hodgson, S. Gray, A. J. Poole, and L Kong, J. Membr. Sci. 475, 552 (2015).

    Article  CAS  Google Scholar 

  29. D. Li, Y. Yan, and H. Wang, Prog. Polym. Sci. 61, 104 (2016).

    Article  CAS  Google Scholar 

  30. R. Reis, L. F. Dumee, B. L. Tardy, R. Dagastine, J. D. Orbell, J. A. Schutz, and M. C. Duke, Sci. Rep. 6, 2016.

  31. M. Bryjak, I. Gancarz, and G. Pozniak, Chem. Pap. Chem. Zvesti 54, 496 (2000).

    CAS  Google Scholar 

  32. M. Bryjak, I. Gancarz, and K. Smolinska, Adv. Colloid Interface Sci. 161, 2 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. K. C. Khulbe, C. Feng, and T. Matsuura, J. Appl. Polym. Sci. 115, 855 (2010).

    Article  CAS  Google Scholar 

  34. V. M. Kochkodan and V. K. Sharma, Sci. Health A 47, 1713 (2012).

    CAS  Google Scholar 

  35. A. V. Fedotova, V. O. Dryakhlov, I. G. Shaikhiev, I. R. Nizameev, and G. F. Garaeva, Surface Eng. Appl. Electrochem. 54, 174 (2018).

    Article  Google Scholar 

  36. A. V. Fedotova, I. G. Shaikhiev, V. O. Dryakhlov, I. R. Nizameev, and I. S. Abdullin, Petr. Chem. 57, 159 (2017).

    Article  CAS  Google Scholar 

  37. D. D. Fazullin, G. V. Mavrin, A. V. Fedotov, V. O. Dryakhlov, and I. G. Shaikhiev, Int. J. Pharm. Technol. 8, 143664 (2016).

    Google Scholar 

  38. R. R. Nabiev, I. G. Shaikhiev, V. O. Dryakhlov, and D. D. Fazullin, Vest. Tekhnol. Univ. 24, 52 (2021).

    Google Scholar 

  39. R. R. Nabiev, I. G. Shaikhiev, V. O. Dryakhlov, and D. D. Fazullin, Vest. Tekhnol. Univ. 24, 39 (2021).

    Google Scholar 

  40. N. G. Bazarnova, E. V. Karpova, I. B. Katrakov, et al., Methods for the Study of Wood and Its Derivatives: A Handbook, Ed. by N. G. Bazarnova (Altai Gos. Univ., Barnaul, 2002) [in Russian].

    Google Scholar 

  41. T. M. Brok, Membrane Filtration (Mir, Moscow, 1987) [in Russian].

  42. S. N. Dmitriev, L. I. Kravets, V. V. Sleptsov, and V. M. Elinson, Desalination 146, 279 (2002).

    Article  CAS  Google Scholar 

  43. L. I. Kravets, A. I. Drachev, A. B. Gilman, E. N. Demidov, and G. Dinescu, Nanotecnology 1, 48 (2008).

    Google Scholar 

  44. M. Y. Alekseeva, V. O. Dryakhlov, M. F. Galikhanov, and I. R. Nizameev, Petr. Chem. 58, 152 (2018).

    Article  CAS  Google Scholar 

  45. I. Shaikhiev, V. Dryahlov, M. Galikhanov, S. Sverguzova, and M. Ivanov, IOP Conf. Series: Mater. Sci. Eng. 492, 1 (2019).

    Google Scholar 

  46. A. V. Fedotova, I. G. Shaikhiev, V. O. Dryakhlov, I. Sh. Abdullin, and S. V. Sverguzova, Vest. BGTU 5, 167 (2016).

    Google Scholar 

  47. I. G. Shaikhiev, V. O. Dryakhlov, S. V. Sverguzova, and L. V. Denisova, Environmental and Construction Engineering: Reality and the Future (Selected Papers, Switzerland, 2021).

    Google Scholar 

  48. P. Canizares, F. Martínez, C. Jimenez, and C. Saez, J. Hazard. Mater. 151, 44 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. A. Almojjly, D. Johnson, D. Oatley-Radcliffe, and N. Hilal, J. Water Proc. Eng. 26, 17 (2018).

    Article  Google Scholar 

  50. Y. Li, L. Zhao, F. Chen, and K. S. **, Environ Sci. Pollut. Res. 27, 25655 (2020).

    Article  CAS  Google Scholar 

  51. V. I. Lesin, S. V. Lesin, and E. V. Ivanov, Pet. Chem. 57, 584 (2017).

    Article  CAS  Google Scholar 

  52. H. Demir-Duz, A. S. Aktürk, O. Ayyildiz, and M. G. Álvarez, J. Environ. Manage. 263, 110346 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Nabiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabiev, R.R., Dryakhlov, V.O., Shaikhiev, I.G. et al. Influence of Unipolar Corona Discharge Parameters on the Efficiency of Separation of Oil–Water Emulsions by Cellulose Acetate Membranes. Membr. Membr. Technol. 4, 223–231 (2022). https://doi.org/10.1134/S2517751622040060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751622040060

Keywords:

Navigation