Log in

Age-related features in expression of calcium-binding proteins in autonomic ganglionic neurons

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Calbindin 28 kDa (CB), calretinin (CR), and parvalbumin (PB) are calcium-binding proteins that are widely distributed in the nervous system and selectively expressed in certain population of neurons. These proteins are expressed not only in the central nervous system but also the autonomic ganglia. CB and PB are found in the sympathetic ganglia of rodents, and CB and CR are found in metasympathetic intramural ganglia. Their functions are poorly understood, but one can suggest that they have an important role in the regulation of Ca2+ levels in the cell. Calcium-binding proteins also play an important role in the age-related development of autonomic neurons. The percentage of CB- and CR-immunopositive neurons in the metasympathetic intramural ganglia of the small intestine in early postnatal development increases, whereas the percentage of CB decreases in sympathetic ganglia. It is possible that the functional meaning of such changes may be associated with the role of calcium currents in the development of neurons and the synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gusev, N.B., Intracellular Ca-binding proteins. Part 1: Classification and structure, Soros. Obraz. Zh., 1998, no. 5, pp. 2–9.

    Google Scholar 

  2. Emanuilov, A.I., Moiseev, K.Yu., Filippov, I.V., and Maslyukov, P.M., Developmental characteristics of neurons in the intramural ganglia of the small intestine containing different types of calcium-binding proteins, Neurosci. Behav. Physiol., 2015, vol. 45, no. 9, pp. 986–990.

    Article  CAS  Google Scholar 

  3. Maslyukov, P.M., Connections of the cat stellate ganglion with target organs during postnatal ontogenesis, Ross. Fiziol. Zh. im. I.M. Sechenova, 2000, vol. 86, no. 6, pp. 703–710.

    Google Scholar 

  4. Maslyukov, P.M., Korobkin, A.A., Konovalov, V.V., Porseva, V.V., and Emanuilov, A.I., Age-related development of calbindin-immunopositive neurons in rat sympathetic ganglia, Neurosci. Behav. Physiol., 2013, vol. 43, no. 2, pp. 153–156.

    Article  CAS  Google Scholar 

  5. Maslyukov, P.M., Nozdrachev, A.D., and Timmermans, J.-P., Age-related characteristics of the neurotransmitter composition of neurons in the stellate ganglion, Neurosci. Behav. Physiol., 2007, vol. 37, no. 4, pp. 349–353.

    Article  CAS  PubMed  Google Scholar 

  6. Nozdrachev, A.D. and Maslyukov, P.M., Vozrastnoe razvitie neironov avtonomnykh gangliev (Age Development of Neurons in Autonomous Ganglia), St. Petersburg: Inform-Navigator, 2014.

    Google Scholar 

  7. Permyakov, E.A., Kal’tsii-svyazyvayushchie belki (Calcium- Binding Proteins), Moscow: Nauka, 1993.

    Google Scholar 

  8. Permyakov, E.A., Metall-svyazyvayushchie belki: struktura, svoistva, funktsii (Metal-Binding Proteins: Structure, Properties, and Functions), Moscow: Nauchnyi Mir, 2012.

    Google Scholar 

  9. Porseva, V.V., Shilkin, V.V., Strelkov, A.A., and Maslyukov, P.M., Calbindin-containing neurons in the ventral horn of the gray matter of the spinal cord in mice, Neurosci. Behav. Physiol., 2015, vol. 45, no. 6, pp. 710–714.

    Article  CAS  Google Scholar 

  10. Abrahám, H., Veszprémi, B., Kravják, A., et al., Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus, Int. J. Dev. Neurosci., 2009, vol. 27, pp. 115–127.

    Article  PubMed  Google Scholar 

  11. Amenta, F., Cavalotta, D., Del Valle, M.E., et al., Calbindin D-28k immunoreactivity in the rat cerebellar cortex: age-related changes, Neurosci. Lett., 1994, vol. 178, pp. 131–134.

    Article  CAS  PubMed  Google Scholar 

  12. Andressen, C., Blumcke, I., and Celio, M.R., Calcium-binding proteins: selective markers of nerve cells, Cell Tissue Res., 1993, vol. 271, pp. 181–208.

    Article  CAS  PubMed  Google Scholar 

  13. Arciszewski, M.B., Calka, J., Wasowicz, K., and Majewski, M., Distribution and chemical coding of calretinin- and calbindin-expressing enteric neurons in the duodenum of the sheep, Pol. J. Vet. Sci., 2009, vol. 12, no. 4, pp. 423–431.

    CAS  PubMed  Google Scholar 

  14. Baimbridge, K.G., Celio, M.R., and Rogers, J.H., Calcium-binding proteins in the nervous system, Trends Neurosci., 1992, vol. 15, pp. 303–308.

    Article  CAS  PubMed  Google Scholar 

  15. Bastianelli, E., Distribution of calcium-binding proteins in the cerebellum, Cerebellum, 2003, vol. 2, pp. 242–262.

    Article  CAS  PubMed  Google Scholar 

  16. Bellido, T., Huening, M., Raval-Pandya, M., et al., Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity, J. Biol. Chem., 2000, vol. 275, pp. 26328–26332.

    Article  CAS  PubMed  Google Scholar 

  17. Brandt, M., Jessberger, S., Steiner, B., et al., Transient calretinin expression defines early post-mitotic step of neuronal differentiation in adult hippocampal neurogenesis, Mol. Cell Neurosci., 2003, vol. 24, pp. 603–613.

    Article  CAS  PubMed  Google Scholar 

  18. Brookes, S.J.H., Steele, P.A., and Costa, M., Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurons in the guinea-pig small intestine, Cell Tissue Res., 1991, vol. 263, pp. 471–481.

    CAS  PubMed  Google Scholar 

  19. Broughton, B.R., Reutens, D.C., and Sobey, C.G., Apoptotic mechanisms after cerebral ischemia, Stroke, 2009, vol. 40, no. 5, pp. e331–e339.

    Article  PubMed  Google Scholar 

  20. Caillard, O., Moreno, H., Schwaller, B., et al., Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 24, pp. 13372–13377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Camandola, S. and Mattson, M.P., Aberrant subcellular neuronal calcium regulation in aging and Alzheimer’s disease, Biochim. Biophys. Acta, 2011, vol. 1813, no. 5, pp. 965–973.

    Article  CAS  PubMed  Google Scholar 

  22. Camp, A.J. and Wijesinghe, R., Calretinin: modulator of neuronal excitability, Int. J. Biochem. Cell Biol., 2009, vol. 41, no. 11, pp. 2118–2121.

    Article  CAS  PubMed  Google Scholar 

  23. Chard, P.S., Bleakman, D., Christakos, S., et al., Calcium buffering properties of calbindin-D28k and parvalbumin in rat sensory neurons, J. Physiol., 1993, vol. 472, pp. 341–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheron, G., Schurmans, S., Lohof, A., et al., Electro physiological behavior of Purkinje cells and motor coordination in calretinin knock-out mice, Prog. Brain Res., 2000, vol. 124, pp. 299–308.

    Article  CAS  PubMed  Google Scholar 

  25. Cheron, G., Servais, L., and Dan, B., Cerebellar network plasticity: from genes to fast oscillation, Neuroscience, 2008, vol. 153, no. 1, pp. 1–19.

    Article  CAS  PubMed  Google Scholar 

  26. Corns, R.A., Boolaky, U.V., and Santer, R.M., Decreased calbindin-D28k immunoreactivity in aged rat sympathetic pelvic ganglionic neurons, Neurosci. Lett., 2000, vol. 292, no. 2, pp. 91–94.

    Article  CAS  PubMed  Google Scholar 

  27. Demarque, M. and Spitzer, N.C., Activity-dependent expression of Lmx1b regulates specification of serotonergic neurons modulating swimming behavior, Neuron, 2010, vol. 67, pp. 321–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Endo, T. and Onaya, T., Immunohistochemical localization of parvalbumin in rat and monkey autonomic ganglia, J. Neurocytol., 1988, vol. 17, pp. 73–77.

    Article  CAS  PubMed  Google Scholar 

  29. Furness, J.B., Kunze, W.A., Bertrand, P.P., et al., Intrinsic primary afferent neurons of the intestine, Prog. Neurobiol., 1998, no. 54, pp. 1–18.

    Article  CAS  PubMed  Google Scholar 

  30. Girard, F., Venail, J., Schwaller, B., and Celio, M.R., The EF-hand Ca(2+)-binding protein super-family: a genome-wide analysis of gene expression patterns in the adult mouse brain, Neuroscience, 2015, vol. 294, pp. 116–155.

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez-Gomes, M. and Meyer, G., Dynamic expression of calretinin in embryonic and early fetal human cortex, Front. Neuroanat., 2014, vol. 8, p. 41.

    Google Scholar 

  32. Grkovic, I. and Anderson, C.R., Calbindin D28Kimmunoreactivity identifies distinct subpopulations of sympathetic pre- and postganglionic neurons in the rat, J. Comp. Neurol., 1997, vol. 386, pp. 245–259.

    Article  CAS  PubMed  Google Scholar 

  33. Grkovic, I. and Anderson, C.R., Calretinin-containing preganglionic nerve terminals in the rat superior cervical ganglion surround neurons projecting to the submandibular salivary gland, Brain Res., 1995, vol. 684, no. 2, pp. 127–135.

    Article  CAS  PubMed  Google Scholar 

  34. Hao, M.M., Bornstein, J.C., Vanden Berghe, P., et al., The emergence of neural activity and its role in the development of the enteric nervous system, Dev. Biol., 2013, vol. 382, no. 1, pp. 365–374.

    Article  CAS  PubMed  Google Scholar 

  35. Hao, M.M., Moore, R.E., Roberts, R.R., et al., The role of neural activity in the migration and differentiation of enteric neuron precursors, Neurogastroenterol. Motil., 2010, vol. 22, no. 5, pp. e127–e137.

    CAS  PubMed  Google Scholar 

  36. Hao, M.M. and Young, H.M., Development of enteric neuron diversity, J. Cell Mol. Med., 2009, vol. 13, no. 7, pp. 1193–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heiman, M.G. and Shaham, S., Twigs into branches: how a filopodium becomes a dendrite, Curr. Opin. Neurobiol., 2010, vol. 20, no. 1, pp. 86–91.

    Article  CAS  PubMed  Google Scholar 

  38. Heizmann, C.W., Calcium signaling in the brain, Acta Neurobiol. Exp. (Warsaw), 1993, vol. 53, no. 1, pp. 15–23.

    CAS  Google Scholar 

  39. Heizmann, C.W. and Braun, K., Changes in Ca(2+)- binding proteins in human neurodegenerative disorders, Trends Neurosci., 1992, vol. 15, pp. 259–264.

    Article  CAS  PubMed  Google Scholar 

  40. Huerta, J.J., Nori, S., Llamosas, M.M., et al., Calretinin immunoreactivity in human sympathetic ganglia, Anat. Embryol. (Berlin), 1996, vol. 194, no. 4, pp. 373–378.

    Article  CAS  Google Scholar 

  41. Iacopino, A.M. and Christakos, S., Specific reduction of calcium binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases, Proc. Natl. Acad. Sci. U.S.A., 1990, vol. 87, pp. 4078–4082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Isaacs, K.R., Winsky, L., Strauss, K.I., and Jacobowitz, D.M., Quadruple co-localization of calretinin,calcitonin gene-related peptide,vasoactive intestinal peptide,and substance P in fibers within the villi of the rat intestine, Cell Tissue Res., 1995, vol. 280, pp. 639–651.

    Article  CAS  PubMed  Google Scholar 

  43. Lee, D., Obukhov, A.G., Shen, Q., et al., Calbindin-D28k decreases L-type calcium channel activity and modulates intracellular calcium homeostasis in response to K+ depolarization in a rat beta cell line RINr1046–38, Cell Calcium, 2006, vol. 39, pp. 475–485.

    Article  CAS  PubMed  Google Scholar 

  44. Lutz, W., Frank, E.M., Craig, T.A., et al., Calbindin D28K interacts with Ran-binding protein M: identification of interacting domains by NMR spectroscopy, Biochem. Biophys. Res. Comm., 2003, vol. 303, no. 4, pp. 1186–1192.

    Article  CAS  PubMed  Google Scholar 

  45. Mann, P.T., Southwell, B.R., Ding, Y.Q., et al., Localization of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract, Cell Tissue Res., 1997, vol. 289, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  46. Masliukov, P.M., Emanuilov, A.I., Moiseev, K., et al., Development of non-catecholaminergic sympathetic neurons in para- and prevertebral ganglia of cats, Int. J. Dev. Neurosci., 2015, vol. 40, pp. 76–84.

    Article  CAS  PubMed  Google Scholar 

  47. Masliukov, P.M., Konovalov, V.V., Emanuilov, A.I., and Nozdrachev, A.D., Development of neuropeptide Y-containing neurons in sympathetic ganglia of rats, Neuropeptides, 2012, vol. 46, no. 6, pp. 345–352.

    Article  CAS  PubMed  Google Scholar 

  48. Masliukov, P.M., Korobkin, A.A., Nozdrachev, A.D., and Timmermans, J.P., Calbindin-D28k immunoreactivity in sympathetic ganglionic neurons during development, Auton. Neurosci., 2012, vol. 167, nos. 1–2, pp. 27–33.

    Article  CAS  PubMed  Google Scholar 

  49. Massouh, M., Wallman, M.J., Pourcher, E., and Parent, A., The fate of the large striatal interneurons expressing calretinin in Huntington’s disease, Neurosci. Res., 2008, vol. 62, no. 4, pp. 216–224.

    Article  CAS  PubMed  Google Scholar 

  50. Mattson, M.P., Calcium and neurodegeneration, Aging Cell, 2007, vol. 6, no. 3, pp. 337–350.

    Article  CAS  PubMed  Google Scholar 

  51. Misawa, R., Girotti, P.A., Mizuno, M.S., et al., Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons, World J. Gastroenterol., 2010, vol. 16, no. 29, pp. 3651–3663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mitsui, R., Immunohistochemical analysis of substance P-containing neurons in rat small intestine, Cell Tissue Res., 2011, vol. 343, no. 2, pp. 331–341.

    Article  CAS  PubMed  Google Scholar 

  53. Moyer, J.R., Furtak, S.C., McGann, J.P., and Brown, T.H., Aging-related changes in calcium-binding proteins in rat perirhinal cortex, Neurobiol. Aging, 2011, vol. 32, no. 9, pp. 1693–1706.

    Article  CAS  PubMed  Google Scholar 

  54. Obermair, G.J., Szabo, Z., Bourinet, E., and Flucher, B.E., Differential targeting of the L-type Ca2+ channel a1C (CaV1.2) to synaptic and extrasynaptic compartments in hippocampal neurons, Eur. J. Neurosci., 2004, vol. 19, pp. 2109–2122.

    Article  PubMed  Google Scholar 

  55. Orduz, D., Bischop, D.P., Schwaller, B., et al., Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons, J. Physiol., 2013, vol. 591, part 13, pp. 3215–3232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qu, Z.D., Thacker, M., Castelucci, P., et al., Immunohistochemical analysis of neuron types in the mouse small intestine, Cell Tissue Res., 2008, vol. 334, no. 2, pp. 147–161.

    Article  CAS  PubMed  Google Scholar 

  57. Resibois, A., Vienne, G., and Pochet, R., Calbindin-D28K and the peptidergic neuroendocrine system in rat gut: an immunohistochemical study, Biol. Cell, 1988, vol. 63, pp. 67–75.

    Article  CAS  PubMed  Google Scholar 

  58. Richardson, R.J., Grkovic, I., Allen, A.M., and Anderson, C.R., Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart, Cell Tissue Res., 2006, vol. 324, pp. 9–16.

    Article  CAS  PubMed  Google Scholar 

  59. Rosenberg, S.S. and Spitzer, N.C., Calcium signaling in neuronal development, Cold Spring Harb. Perspect. Biol., 2011, vol. 3, no. 10. doi 10.1101/cshperspect.a004259

  60. Sang, Q. and Young, H.M., Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse, Cell Tissue Res., 1996, vol. 284, no. 1, pp. 39–53.

    Article  CAS  PubMed  Google Scholar 

  61. Satake, S. and Imoto, K., Cav2.1 channels control multivesicular release by relying on their distance from exocytotic Ca2+ sensors at rat cerebellar granule cells, J. Neurosci., 2014, vol. 34, no. 4, pp. 1462–1474.

    Article  CAS  PubMed  Google Scholar 

  62. Sayegh, A.I. and Ritter, R.C., Morphology and distribution of nitric oxide synthase-,neurokinin-1 receptor-,calretinin-,calbindin-,and neurofilament-Mimmunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine, Anat. Rec., Part A, 2003, vol. 271, no. 1, pp. 209–216.

    Article  Google Scholar 

  63. Schmidt, H., Three functional facets of calbindin D-28k, Front. Mol. Neurosci., 2012, vol. 5, p. 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schwaller, B., Calretinin: from a “simple” Ca2+ buffer to a multifunctional protein implicated in many biological processes, Front. Neuroanat., 2014, vol. 5, no. 8, p. 3.

    Google Scholar 

  65. Schwaller, B., Cytosolic Ca2+ buffers, Cold Spring Harbor Perspect. Biol., 2010, vol. 11. doi 10.1101/cshperspect. a004051

  66. Schwaller, B., The continuing disappearance of “pure” Ca2+ buffers, Cell. Mol. Life Sci., 2009, vol. 66, pp. 275–300.

    Article  CAS  PubMed  Google Scholar 

  67. Schwaller, B., Meyer, M., and Schiffmann, S., “New” functions for “old” proteins: the role of the calciumbinding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice, Cerebellum, 2002, vol. 1, no. 4, pp. 241–258.

    Article  CAS  PubMed  Google Scholar 

  68. Shetty, A.K. and Turner, D.A., Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats, J. Comp. Neurol., 1998, vol. 394, pp. 252–269.

    Article  CAS  PubMed  Google Scholar 

  69. Siechen, S., Yang, S., Chiba, A., and Saif, T., Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 12611–12616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Simons, M.J. and Pellionisz, A.J., Genomics, morphogenesis and biophysics: triangulation of Purkinje cell development, Cerebellum, 2006, vol. 5, pp. 27–35.

    CAS  Google Scholar 

  71. Song, Z.M., Brookes, S.J., and Costa, M., All calbindin- immunoreactive myenteric neurons project to the mucosa of the guineapig small intestine, Neurosci. Lett., 1994, vol. 180, pp. 219–222.

    Article  CAS  PubMed  Google Scholar 

  72. Villa, A., Podini, P., Panzeri, M.C., et al., Cytosolic Ca2+ binding proteins during rat brain ageing: loss of calbindin and calretinin in the hippocampus, with no change in the cerebellum, Eur. J. Neurosci., 1994, vol. 6, pp. 1491–1499.

    CAS  PubMed  Google Scholar 

  73. Wilhelm, M., Lawrence, J.J., and Gábriel, R., Enteric plexuses of two choline-acetyltransferase transgenic mouse lines: chemical neuroanatomy of the fluorescent protein-expressing nerve cells, Brain Res. Bull., 2015, vol. 111, pp. 76–83.

    Article  CAS  PubMed  Google Scholar 

  74. Yano, S., Tokumitsu, H., and Soderling, T.R., Calcium promotes cell survival through CaM-K kinase activation of the proteinkinase-B pathway, Nature, 1998, vol. 396, pp. 584–587.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Masliukov.

Additional information

iginal Russian Text © P.M. Masliukov, A.D. Nozdrachev, A.I. Emanuilov, 2016, published in Uspekhi Gerontologii, 2016, Vol. 29, No. 2, pp. 247–253.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masliukov, P.M., Nozdrachev, A.D. & Emanuilov, A.I. Age-related features in expression of calcium-binding proteins in autonomic ganglionic neurons. Adv Gerontol 6, 298–303 (2016). https://doi.org/10.1134/S207905701604010X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207905701604010X

Keywords

Navigation