Log in

Association of renal function, telomere length, and markers of chronic inflammation in patients without chronic kidney and cardiovascular diseases

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Decreased renal function is diagnosed in a great number of people aged over 60. Decreased glomerular filtrationrate varies widely within different age ranges. One of the probable mechanisms associated with the steeper decline of renal function may be a shortening in telomere length due to some chronic inflammation. The objective of this research was to study the association of renal function with telomere length and the indicators of chronic inflammation in patients without chronic kidney disease and cardiovascular diseases. The study involved 253 patients (81 men and 172 women) with the mean age of 51.5 ± 13.3 years without chronic kidney disease and cardiovascular diseases. Of the participants, 55 patients had hypertension of 1‒2 degree, 46 patients had normal parameters of renal function, and 207 participants were characterized by a mild failure in renal function. The level of albuminuria in all patients was below 30 mg/24 h. A multivariate linear regression analysis, with consideration of age- and gender-related differences, has shown a statistically significant association of albuminuria levels with telomere lengths (p = 0.023), CRP (p = 0.047), and fibrinogen (p = 0.001). No associations have been found between telomere length and inflammatory markers, on the one hand, and the levels of glomerular filtration rate, urea and creatinine, on the other hand, although the latter well correlated with age, (p < 0.001). It has been shown that albuminuria is associated with chronic inflammation and telomere length (the marker of replicative cell senescence) to a larger extent than all other renal function indicators under study. Albuminuria can be regarded as the principal target for a therapeutic approach to prevent changes in renal function and the vascular wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bikbov, B.T. and Tomilina, N.A., The status of substitutive therapy of patients with chronic renal failure in Russian Federation in 1998–2007: analytical report according to the results of Russian inventory on substitutive renal therapy, Nefrol. Dializ, 2009, no. 11 (3), pp. 144–233.

    Google Scholar 

  2. Agewall, S., Fagerberg, B., Attvall, S., et al., Microalbuminuria, insulin sensitivity and haemostatic factors in non-diabetic treated hypertensive men: risk factor intervention study group, J. Int. Med., 1995, vol. 237, pp. 195–203.

    CAS  Google Scholar 

  3. Anderson, S. and Brenner, B.M., Effects of aging on the renal glomerulus, Am. J. Med., 1986, vol. 80, pp. 435–442.

    Article  CAS  PubMed  Google Scholar 

  4. Festa, A., D’agostino, R., Howard, G., et al., Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects: the insulin resistance atherosclerosis study, Kidney Int., 2000, vol. 58, pp. 1703–1710.

    Article  CAS  PubMed  Google Scholar 

  5. Bansal, N., Whooley, M.A., Regan, M., et al., Association between kidney function and telomere length: the heart and soul study, Am. J. Nephrol., 2012, vol. 36, no. 5, pp. 405–411.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berton, G., Citro, T., Palmieri, R., et al., Albumin excretion rate increases during acute myocardial infarction and strongly predicts early mortality, Circulation, 1997, vol. 96, pp. 3338–3345.

    Article  CAS  PubMed  Google Scholar 

  7. Blasco, M.A., Telomeres and human disease: ageing, cancer and beyond, Nat. Rev. Genet., 2005, vol. 6, pp. 611–622.

    Article  CAS  PubMed  Google Scholar 

  8. Bonventre J.V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure, J. Am. Soc. Nephrol., 2003, vol. 14, suppl. 1, pp. 55–61.

    Article  Google Scholar 

  9. Boxall, M.C., Goodship, T.H., Brown, A.L., et al., Telomere shortening and haemodialysis, Blood Purif., 2006, vol. 24, pp. 185–189.

    Article  PubMed  Google Scholar 

  10. Csiszar, A., Toth, J., Peti-Peterdi, J., et al., The aging kidney: role of endothelial oxidative stress and inflammation, Acta Physiol. Hung., 2007, vol. 94, pp. 107–115.

    Article  CAS  PubMed  Google Scholar 

  11. Fehrman-Ekholm, I. and Skeppholm, L., Renal function in the elderly >70 years old) measured by means of lohexol clearance, serum creatinine, serum urea and estimated clearance, Scand. J. Urol. Nephrol., 2004, vol. 38, no. 1, pp. 73–77.

    Article  CAS  PubMed  Google Scholar 

  12. Glassock, R.J. and Winearls, C., Ageing and the glomerular filtration rate: truths and consequences, Trans. Am. Clin. Climatol. Ass., 2009, vol. 120, pp. 419–428.

    Google Scholar 

  13. Goslin, P., Sutcliffe, A.J., Cooper, M.A., and Jones, A.F., Burn and trauma associated proteinuria: the role of lipid peroxidation, rennin, and myoglobin, Ann. Clin. Biochem., 1988, vol. 25, pp. 53–59.

    Article  Google Scholar 

  14. Gosling, P., Shearman, C.P., Gwynn, B.R., et al., Microproteinuria: response to operation, Br. Med. J., 1988, vol. 296, pp. 338–339.

    Article  CAS  Google Scholar 

  15. Gourtsoyiannis, N., Prassopoulos, P., Cavouras, D., et al., The thickness of the renal parenchyma decreases with age: a CT study of 360 patients, Am. J. Roentgenol., 1990, vol. 155, pp. 541–544.

    Article  CAS  Google Scholar 

  16. Greider, C.W. and Blackburn, E.H., Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 1985, vol. 43, pp. 405–413.

    Article  CAS  PubMed  Google Scholar 

  17. Harley, C.B., Vaziri, H., Counter, C.M., and Allsopp, R.C., The telomere hypothesis of cellular aging, Exp. Gerontol., 1992, vol. 27, pp. 375–382.

    Article  CAS  PubMed  Google Scholar 

  18. Himmelfarb J. and McMonagle E. Manifestations of oxidant stress in uremia, Blood Purif., 2001, vol. 19, pp. 200–205.

  19. Shu, H.-S., Tai, Y.-Y., Chang, K.-T., et al., Plasma high-sensitivity C-reactive protein level is associated with impaired estimated glomerular filtration rate in hypertensives, Acta Cardiol. Sin., 2015, vol. 31, pp. 91–97.

    PubMed  PubMed Central  Google Scholar 

  20. Jensen, J.S., Myrup, B., Borch-Johnsen, K., et al., Aspects of haemostatic function in healthy subjects with microalbuminuria: a potential atherosclerotic risk factor, Thromb. Res., 1995, vol. 77, pp. 423–430.

    Article  CAS  PubMed  Google Scholar 

  21. Toblli, J.E., Bevione, P., Di Gennaro, F., et al., Understanding the mechanisms of proteinuria: therapeutic implications, Int. J. Nephrol., 2012. doi 10.1155/2012/546039

    Google Scholar 

  22. Ju, Z. and Rudolph, K.L., Telomeres and telomerase in stem cells during aging and disease, Genome Dyn., 2006, vol. 1, pp. 84–103.

    Article  CAS  PubMed  Google Scholar 

  23. Kidney disease: improving global outcomes (KDIGO) CKD Work Group: KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease, Kidney Int. Suppl., 2013, vol. 3, pp. 1–150.

  24. Klein, N.J., Shenna, G.I., Heyderman, R.S., and Levin, M., Alteration in glycosaminoglycan metabolism and surface charge on human umbilical vein endothelial cells induced by cytokines, endotoxin and neutrophils, J. Cell. Sci., 1992, vol. 102, pp. 821–832.

    CAS  PubMed  Google Scholar 

  25. Knöbl, P., Schernthaner, G., Schnack, C., et al., Thrombogenic factors are related to urinary albumin excretion rate in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic patients, Diabetologia, 1993, vol. 36, pp. 1045–1050.

    Article  PubMed  Google Scholar 

  26. Lauren, P.W. and Schnellmann, R.G., Telomeres and telomerase in renal health, J. Am. Soc. Nephrol., 2011, vol. 22, pp. 39–41.

    Article  Google Scholar 

  27. Levey, A.S., Coresh, J., Greene, T., et al., Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate, Ann. Int. Med., 2006, vol. 145, pp. 247–254.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, J., Hu, F.B., Rimm, E.B., et al., The association of serum lipids and inflammatory biomarkers with renal function in men with type II diabetes mellitus, Kidney Int., 2006, vol. 69, pp. 336–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lindeman, R.D., Overview: renal physiology and pathophysiology of aging, Am. J. Kidney Dis., 1990, no. 16, pp. 275–282.

    Article  CAS  PubMed  Google Scholar 

  30. Melk, A., Ramassar, V., Helms, L.M., et al., Telomere shortening in kidneys with age, J. Am. Soc. Nephrol., 2000, vol. 11, pp. 444–453.

    CAS  PubMed  Google Scholar 

  31. Menon, V., Wang, X., Greene, T., et al., Relationship between C-reactive protein, albumin, and cardiovascular disease in patients with chronic kidney disease, Am. J. Kidney Dis., 2003, vol. 42, pp. 44–52.

    CAS  PubMed  Google Scholar 

  32. Njajou, O.T., Hsueh, W.C., Blackburn, E.H., et al., Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study, J. Gerontol., Ser. A, 2009, vol. 64, no. 8, pp. 860–864.

    Google Scholar 

  33. Rule, A.D., Amer, H., Cornell, L., et al., The association between age and nephrosclerosis on renal biopsy among healthy adults, Ann. Int. Med., 2010, vol. 152, pp. 561–567.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmitt, R. and Cantley, L.G., The impact of aging on kidney repair, Am. J. Physiol.: Cell Physiol., 2008, vol. 294, pp. F1265–F1272.

    CAS  Google Scholar 

  35. Singh, D., Whooley, M., and Shlipak, M., Association of cystatin C and estimated GFR with inflammatory biomarkers: the heart and soul, Care Med., 2008, vol. 36, no. 1, pp. 81–86.

    Article  Google Scholar 

  36. Thijssen, D.H., Vos, J.B., Verseyden, C., et al., Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training, Aging Cell, 2006, vol. 5, pp. 495–503.

    Article  CAS  PubMed  Google Scholar 

  37. Thum, T., Hoeber, S., Froese, S., et al., Age-dependent impairment of endothelial progenitor cells is corrected by growth hormone-mediated increase of insulin- like growth-factor-1, Circ. Res., 2007, vol. 100, pp. 434–443.

    Article  CAS  PubMed  Google Scholar 

  38. Population Division: World Population Ageing 2013, NewYork: United Nations, 2013.

  39. Annual Data Report, U.S. Renal Data System, Bethesda, MD: Natl. Inst. Diabetes Dig. Kidney Dis., 1996.

  40. van der Harst, P., van der Steege, G., De Boer, R.A., et al., Telomere length of circulating leukocytes is decreased in patients with chronic heart failure, J. Am. Coll. Cardiol., 2007, vol. 49, pp. 1459–1464.

    Article  PubMed  Google Scholar 

  41. Verdun, R.E. and Karlseder, J., Replication and protection of telomeres, Nature, 2007, vol. 447, pp. 924–931.

    Article  CAS  PubMed  Google Scholar 

  42. Vlassara, H., Torreggiani, M., Post, J.B., et al., Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging, Kidney Int. Suppl., 2009, vol. 76, no. 114, pp. S3–S11.

    Article  Google Scholar 

  43. Von Zglinicki, T., Oxidative stress shortens telomeres, Trends Biochem. Sci., 2002, vol. 27, pp. 339–344.

    Article  Google Scholar 

  44. Westhoff, J.H., Schildhorn, C., Jacobi, C., et al., Telomere shortening reduces regenerative capacity after acute kidney injury, J. Am. Soc. Nephrol., 2010, vol. 21, pp. 327–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wills, L.P. and Schnellmann, R.G., Telomeres and telomerase in renal health, J. Am. Soc. Nephrol., 2011, vol. 22, pp. 39–41.

    Article  PubMed  Google Scholar 

  46. Wong, L.S.M., van der Harst, P., De Boer, R.A., et al., Renal dysfunction is associated with shorter telomere length in heart failure, Clin. Res. Cardiol., 2009, vol. 98, pp. 629–634.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zakian, V.A., Life and cancer without telomerase, Cell, 1997, vol. 91, pp. 1–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Pykhtina.

Additional information

Original Russian Text © V.S. Pykhtina, I.D. Strazhesko, O.N. Tkacheva, D.U. Akasheva, E.N. Dudinskaya, V.A. Vygodin, E.V. Plokhova, A.S. Kruglikova, S.A. Boitsov, 2016, published in Uspekhi Gerontologii, 2016, Vol. 29, No. 1, pp. 79–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pykhtina, V.S., Strazhesko, I.D., Tkacheva, O.N. et al. Association of renal function, telomere length, and markers of chronic inflammation in patients without chronic kidney and cardiovascular diseases. Adv Gerontol 6, 217–223 (2016). https://doi.org/10.1134/S2079057016030097

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057016030097

Keywords

Navigation