Log in

Study of the Phase Composition and Microstructure of Complex Carbide (Ti, W)C Obtained by Spark Plasma Sintering of WC and TiC Powders

  • PLASMOCHEMICAL METHODS OF PRODUCTION AND TREATMENT OF MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—The possibility of low-temperature in situ synthesis of (Ti, W)C using plasma-chemical WC nanopowders and industrial micron TiC powders is demonstrated. Sintering/synthesis of WC–(25, 50, and 75) wt % TiC is carried out by electric pulsed (“spark”) plasma sintering (SPS) by heating powders in a vacuum at a rate of 50°C/min to a temperature of more than 1200°C under conditions of applying a stress of 70 MPa. It is established that the synthesis proceeds most efficiently in nanopowders with an addition of 50 and 75 wt % TiC. It is shown that the joint use of plasma-chemical synthesis of nanopowders and SPS makes it possible to obtain fine-grained (with a grain size of less than 1 μm) samples with increased density and satisfactory mechanical properties (Vickers hardness is 17–18 GPa, and minimum Palmquist crack resistance coefficient is ~3 MPa m1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ortner, H.M., Ettmayer, P., and Kolaska, H., The history of the technological progress of hardmetals, Int. J. Refract. Met. Hard Mater., 2014, vol. 44, pp. 148–159. https://doi.org/10.1016/j.ijrmhm.2013.07.014

    Article  CAS  Google Scholar 

  2. Exner, H.E. and Gurland, J., A review of parameters influencing some mechanical properties of tungsten carbide–cobalt alloys, Powder Metall., 1970, vol. 13, no. 25, pp. 13–31. https://doi.org/10.1179/POM.1970.13.25.002

    Article  CAS  Google Scholar 

  3. Wang, X., Hwang, K.S., Koopman, M., Fang, Z.Z., and Zhang, L., Mechanical properties and wear resistance of functionally graded WC–Co, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 46–51. https://doi.org/10.1016/j.ijrmhm.2012.04.011

    Article  CAS  Google Scholar 

  4. Spriggs, G.E., A history of fine grained hardmetal, Int. J. Refract. Met. Hard Mater., 1995, vol. 13, no. 5, pp. 241–255. https://doi.org/10.1016/0263-4368(95)92671-6

    Article  CAS  Google Scholar 

  5. Pötshke, J., Säuberlich, T., Vornberger, A., and Meese-Marktscheffel, J.A., Solid state sintered nanoscaled hardmetals and their properties, Int. J. Refract. Met. Hard Mater., 2018, vol. 72, pp. 45–50. https://doi.org/10.1016/j.ijrmhm.2017.12.008

    Article  CAS  Google Scholar 

  6. Farhat, Z.N., Microstructural characterization of WC–TiC–Co cutting tools during high-speed machining of P20 mold steel, Mater. Charact., 2003, vol. 51, nos. 2–3, pp. 117–130. https://doi.org/10.1016/j.matchar.2003.10.005

  7. **ong, J., Guo, Z., Yang, M., Wan, W., and Dong, G., Tool life and wear of WC–TiC–Co ultrafine cemented carbide during dry cutting of AISI H13 steel, Ceram. Int., 2013, vol. 39, no. 1, pp. 337–346. https://doi.org/10.1016/j.ceramint.2012.06.031

    Article  CAS  Google Scholar 

  8. Upadhyaya, G.S., Nature and Properties of Refractory Carbides, New York: Nova Sci., 1996.

    Google Scholar 

  9. Trent, E.M., Cutting tool materials, carbides, in Metal Cutting, Boston: Butterworth–Heinemann, 1991, pp. 127–170.

  10. García, J., Ciprés, V.C., Blomqvist, A., and Kaplan, B., Cemented carbide microstructures: A review, Int. J. Refract. Met. Hard Mater., 2019, vol. 80, pp. 40–68. https://doi.org/10.1016/j.ijrmhm.2018.12.004

    Article  CAS  Google Scholar 

  11. Panov, V.S. and Chuvilin, A.M., Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii is nikh (Technology and Properties of Sintered Solid Alloys and Their Products), Moscow: Mosk. Inst. Stali Splavov, 2001.

  12. Qiao, Z., Räthel, J., Berger, L.-M., and Herrmann, M., Investigation of binderless WC–TiC–Cr3C2 hard materials prepared by spark plasma sintering (SPS), Int. J. Refract. Met. Hard Mater., 2013, vol. 38, pp. 7–14. https://doi.org/10.1016/j.ijrmhm.2012.12.002

    Article  CAS  Google Scholar 

  13. Zhang, L., Liang, Y., Gu, J.-H., Yan, X.-Y., Li, X., Yu, P., and Wang, L., Synthesis of nano (Ti,W)C powder with preferred orientation and twin boundary structure, Adv. Powder Technol., 2022, vol. 33, no. 5, p. 103550. https://doi.org/10.1016/j.apt.2022.103550

    Article  CAS  Google Scholar 

  14. Zhang, Z., Xu, Y., Yi, M., Jiang, S., Chen, Z., **ao, G., Zhang, J., Chen, H., and Xu, C., Synthesis and characterization of extremely hard and strong (W,Ti,Ta)C cermet by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2022, vol. 105, p. 105831. https://doi.org/10.1016/j.ijrmhm.2022.105831

    Article  CAS  Google Scholar 

  15. Wang, Z., Wang, J., Xu, Y., Yi, M., **ao, G., Chen, Z., Zhang, J., Chen, H., and Xu, C., Microstructure and mechanical properties of (Ti,W)C cermets prepared by ultrafast spark plasma sintering, Ceram. Int., 2022, vol. 48, no. 11, pp. 15613–15621. https://doi.org/10.1016/j.ceramint.2022.02.095

    Article  CAS  Google Scholar 

  16. Petersson, A., Sintering shrinkage of WC–Co and WC–(Ti,W)C–Co materials with different carbon contents, Int. J. Refract. Met. Hard Mater., 2004, vol. 22, nos. 4–5, pp. 211–217. https://doi.org/10.1016/j.ijrmhm.2004.07.003

  17. Yoon, B.-K., Lee, B.-A., and Kang, S.-J.L., Growth behavior of rounded (Ti,W)C and faceted WC grains in a Co matrix during liquid phase sintering, Acta Mater., 2005, vol. 53, no. 17, pp. 4677–4685. https://doi.org/10.1016/j.actamat.2005.06.021

    Article  CAS  Google Scholar 

  18. Buravlev, I.Yu., Shichalin, O.O., Papynov, E.K., Golub, A.V., Gridasova, E.A., Buravleva, A.A., Yagofarov, V.Yu., Dvornik, M.I., Fedorets, A.N., Reva, V.P., Yudakov, A.A., and Sergienko, V.I., WC-5TiC-10 Co hard metal alloy fabrication via mechanochemical and SPS techniques, Int. J. Refract. Met. Hard Mater., 2021, vol. 94, p. 105385. https://doi.org/10.1016/j.ijrmhm.2020.105385

    Article  CAS  Google Scholar 

  19. Samsonov, G.V., Vitryanyuk, V.K., and Chaplygin, F.I., Karbidy vol’frama (Tungsten Carbides), Kiev: Naukova Dumka, 1974.

  20. Nino, A., Izu, Y., Sekine, T., Sugiyama, S., and Taimatsu, H., Effects of TaC and TiC addition on the microstructures and mechanical properties of binderless WC, Int. J. Refract. Met. Hard Mater., 2019, vol. 82, pp. 167–173. https://doi.org/10.1016/j.ijrmhm.2019.04.012

    Article  CAS  Google Scholar 

  21. Lantsev, E.A., Malekhonova, N.V., Tsvetkov, Yu.V., Blagoveshchensky, Yu.V., Chuvildeev, V.N., Nokhrin, A.V., Boldin, M.S., Andreev, P.V., Smetanina, K.E., and Isaeva, N.V., Investigation of aspects of high-speed sintering of plasma-chemical nanopowders of tungsten carbide with higher content of oxygen, Inorg. Mater.: Appl. Res., 2021, vol. 12, no. 3, pp. 650–663. https://doi.org/10.1134/S2075113321030242

    Article  Google Scholar 

  22. Chuvil’deev, V.N., Blagoveshchenskii, Yu.V., Sakharov, N.V., Boldin, M.S., Nokhrin, A.V., Isaeva, N.V., Shotin, S.V., Lopatin, Yu.G., and Smirnova, E.S., Preparation and investigation of ultrafine-grained tungsten carbide with high hardness and fracture toughness, Dokl. Phys., 2015, vol. 60, no. 7, pp. 288–291. https://doi.org/10.1134/S1028335815070095

    Article  CAS  Google Scholar 

  23. Tokita, M., Progress in Spark Plasma Sintering (SPS) method, systems, ceramics applications and industrialization, Ceramics, 2021, vol. 4, no. 2, pp. 160–198. https://doi.org/10.3390/ceramics4020014

    Article  CAS  Google Scholar 

  24. Olevsky, E.A. and Dudina, D.V., Field-Assisted Sintering: Science and Applications, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-76032-2

  25. Blagoveshchenskiy, Yu.V., Isayeva, N.V., Blagoveshchenskaya, N.V., Melnik, Yu.I., Chuvildeyev, V.N., Nokhrin, A.V., Sakharov, N.V., Boldin, M.S., Smirnova, Ye.S., Shotin, S.V., Levinsky, Yu.V., and Voldman, G.M., Methods of compacting nanostructured tungsten–cobalt alloys from nanopowders obtained by plasma chemical synthesis, Inorg. Mater.: Appl. Res., 2015, vol. 6, pp. 415–426. https://doi.org/10.1134/S2075113315050032

    Article  Google Scholar 

  26. Lantsev, E.A., Chuvil’deev, V.N., Nokhrin, A.V., Boldin, M.S., Tsvetkov, Yu.V., Blagoveshchenskiy, Yu.V., Isaeva, N.V., Andreev, P.V., and Smetanina, K.E., Kinetics of spark plasma sintering of WC–10% Co ultrafine-grained hard alloys, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 3, pp. 586–597. https://doi.org/10.1134/S2075113320030284

    Article  Google Scholar 

  27. Blagoveshchenskiy, Yu.V., Isaeva, N.V., Lantsev, E.A., Boldin, M.S., Chuvil’deev, V.N., Nokhrin, A.V., Murashov, A.A., Andreev, P.V., Smetanina, K.E., Malekhonova, N.V., and Terentev, A.V., Spark plasma sintering of WC–10Co nanopowders with various carbon content obtained by plasma-chemical synthesis, Inorg. Mater.: Appl. Res., 2021, vol. 12, pp. 528–537. https://doi.org/10.1134/S207511332102009X

    Article  Google Scholar 

  28. Blagoveshchenskii, Yu.V., Alekseev, N.V., Samokhin, A.V., Mel’nik, Yu.I., Tsvetkov, Yu.V., and Kornev, S.A., RF Patent 2349424, Byull. Izobret., 2009, no. 8.

  29. Smetanina, K.E., Andreev, P.V., Lantsev, E.A., Vostokov, M.M., and Malekhonova, N.V., X-ray diffraction layer-by-layer analysis of tungsten carbide-based hard alloys, Zavod. Lab. Diagn. Mater., 2020, vol. 86, no. 8, pp. 38–42. https://doi.org/10.26896/1028-6861-2020-86-8-38-42

    Article  CAS  Google Scholar 

  30. Lantsev, E.A., Malekhonova, N.V., Chuvil’deev, V.N., Nokhrin, A.V., Tsvetkov, Yu.V., Blagoveshchenskiy, Yu.V., Boldin, M.S., Andreev, P.V., Smetanina, K.E., and Isaeva, N.V., Study of high-speed sintering of fine-grained hard alloys based on tungsten carbide with ultralow cobalt content: Part I. Pure tungsten carbide, Inorg. Mater.: Appl. Res., 2022, vol. 13, no. 3, pp. 761–774. https://doi.org/10.1134/S2075113322030236

    Article  Google Scholar 

  31. Engel, N., Metallic lattices considered as electron concentration phases, ASM Trans. Q., 1964, vol. 57, no. 3, pp. 610–619.

    CAS  Google Scholar 

  32. Guérin, Y. and De Novion, C.H., Structure crystalline de V8C7, Rev. Int. Hautes Temp. Refract., 1971, vol. 8, pp. 311–314.

    Google Scholar 

  33. Rahaman, M.N., Ceramics Processing and Sintering, Boca Raton: CRC Press, 2003.

    Google Scholar 

  34. Kim, H.-C., Kim, D.-K., Woo, K.-D., Ko, I.-Y., and Shon, I.-J., Consolidation of binderless WC–TiC by high frequency induction heating sintering, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, no. 1, pp. 48–54. https://doi.org/10.1016/j.ijrmhm.2007.01.006

    Article  CAS  Google Scholar 

  35. Pelleg, J., Diffusion in Ceramics, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-18437-1

  36. Chuvil’deev, V.N., Neravnovesnye granitsy zeren v metallakh: Teoriya i prilozheniya (Nonequilibrium Grains Boundaries in Metals: Theory and Applications), Moscow: Fizmatlit, 2004.

  37. Pierson, H.O., Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, Westwood, NJ: Noyes, 1996.

    Google Scholar 

  38. Zubarev, P.V., Zharoprochnost’ faz vnedreniya (Heat Resistance of Implementation Phases), Moscow: Metallurgiya, 1985.

Download references

Funding

This study was carried out as part of state assignment 075-00715-22-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Terent’ev, Yu. V. Blagoveshchenskij, N. V. Isaeva, E.A. Lancev, K. E. Smetanina, A. A. Murashov, A. V. Nokhrin, M. S. Boldin, V. N. Chuvil’deev or G. V. Shcherbak.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terent’ev, A.V., Blagoveshchenskij, Y.V., Isaeva, N.V. et al. Study of the Phase Composition and Microstructure of Complex Carbide (Ti, W)C Obtained by Spark Plasma Sintering of WC and TiC Powders. Inorg. Mater. Appl. Res. 15, 696–706 (2024). https://doi.org/10.1134/S2075113324700114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113324700114

Navigation