Log in

Thermodynamics of Methane Adsorption in a Microporous Carbon Adsorbent Prepared From Polymer Composition

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Carbon microporous adsorbents obtained on the basis of polymers are promising adsorbents for the tasks of adsorption storage of natural gas due to the possibility of creating a precise porous structure, as well as optimal mechanical characteristics. A study of the adsorption of methane in a carbon adsorbent based on a composite polymer of furfural and epoxy resin in the temperature range from 178 to 360 K and pressures up to 25 MPa has been carried out. The thermodynamic functions of the adsorption system—the differential molar isosteric and integral heats of adsorption, as well as the isosteric entropy, enthalpy, and heat capacity of the system are calculated. The obtained thermodynamic functions are of fundamental importance in the analysis of the properties of nanodispersed adsorbate in the micropores of the adsorbent, and can also be used as input data in modeling the thermodynamic states of experimental systems for methane storage and transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., et al., Russ. Chem. Rev., 2018, vol. 87, no. 10, pp. 950–983.

    Article  CAS  Google Scholar 

  2. Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., et al., Russ. Chem. Rev., 2019, vol. 88, no. 9, pp. 925–978.

    Article  CAS  Google Scholar 

  3. Kumar, K.V., Preuss, K., Titirici, M.M., and Rodríguez-Reinoso, F., Chem. Rev., 2017, vol. 117, no. 3, pp. 1796–1825. https://doi.org/10.1021/acs.chemrev.6b00505

    Article  CAS  Google Scholar 

  4. Men’shchikov, I.E., Shiryaev, A.A., Shkolin, A.V., Vysotskii, V.V., Khozina, E.V., and Fomkin, A.A., Korean J. Chem. Eng., 2021, vol. 38, pp. 276–291. https://doi.org/10.1007/s11814-020-0683-2

    Article  Google Scholar 

  5. Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., et al., Russ. Chem. Bull., 2018, vol. 67, no. 10, pp. 1814–1822. https://doi.org/10.1007/s11172-018-2294-1

    Article  Google Scholar 

  6. Knyazeva, M.K., Solovtsova, O.V., Tsivadze, A.Yu., et al., Russ. J. Inorg. Chem., 2019, vol. 64, pp. 1507–1512. https://doi.org/10.1134/S0036023619120064

    Article  CAS  Google Scholar 

  7. Knyazeva, M.K., Tsivadze, A.Yu., Solovtsova, O.V., et al., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, pp. 9–14. https://doi.org/10.1134/S2070205119010064

    Article  CAS  Google Scholar 

  8. Makal, T.A., Li, J.-R., Lu, W., and Zhou, H.-C., Chem. Soc. Rev., 2012, vol. 41, pp. 7761–7779.

    Article  CAS  Google Scholar 

  9. Solovtsova, O.V., Shkolin, A.V., Men’shchikov, I.E., et al., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 6, pp. 1080–1084. https://doi.org/10.1134/S2070205119060303

    Article  CAS  Google Scholar 

  10. Solovtsova, O.V., Shkolin, A.V., Men’shchikov, I.E., et al., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 5, pp. 826–832. https://doi.org/10.1134/S207020511905023X

    Article  CAS  Google Scholar 

  11. Rubio-Martinez, M., Avci-Camur, C., Thornton, A.W., Imaz, I., Maspoch, D., and Hill, M.R., Chem. Soc. Rev., 2017, vol. 46, pp. 3453–3480.

    Article  CAS  Google Scholar 

  12. Valizadeh, B., Nguyen, T.N., and Stylianou, K.C., Polyhedron, 2018, vol. 145, pp. 1–15.

    Article  CAS  Google Scholar 

  13. Fomkin, A.A., Pribylov, A.A., Tkachev, A.G., et al., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 1, pp. 3–7.

    Article  Google Scholar 

  14. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Y., et al., Adsorption, 2017, vol. 23, no. 2–3, pp. 327–339.

    Article  Google Scholar 

  15. Gur’yanov, V.V., Mukhin, V.M., and Kurilkin, A.A., Catal. Ind., 2013, vol. 5, pp. 156–163.

    Article  Google Scholar 

  16. Mukhin, V.M., Tarasov, A.V., and Klushin, V.N., Aktivnye ugli Rossii (Active Carbons of Russia), Moscow: Metallurgiya, 2000.

  17. Mukhin, V.M., et al., Sorbtsionnye Khromatogr. Protsessy, 2009, vol. 9, no. 2, pp. 191–195.

    Google Scholar 

  18. Casco, M.E., Martínez-Escandell, M., and Gadea-Ramos, E., Chem. Mater., 2015, vol. 27, no. 3, pp. 959–964.

    Article  CAS  Google Scholar 

  19. Wang, Y., Ercan, C., Khawajah, A., and Othman, R., AIChE J., 2012, vol. 58, no. 3, pp. 782–788.

    Article  CAS  Google Scholar 

  20. Kockrick, E., Schrage, C., Borchardt, L., Klein, N., Rose, M., Senkovska, I., and Kaskel, S., Carbon, 2010, vol. 48, no. 6, pp. 1707–1717.

    Article  CAS  Google Scholar 

  21. Men’shchikov, I.E., Shkolin, A.V., Strizhenov, E.M., et al., Nanomaterials, 2020, vol. 10, no. 11, p. 2243. https://doi.org/10.3390/nano10112243

    Article  Google Scholar 

  22. Men’shchikov, I., Shkolin, A., Khozina, E., and Fomkin, A., Nanomaterials, 2020, vol. 10, no. 7, p. 1379. https://doi.org/10.3390/nano10071379

    Article  Google Scholar 

  23. Ridha, F.N., Yunus, R.M., Rashid, M., and Ismail, A.F., Exp. Therm. Fluid Sci., 2007, vol. 32, pp. 14–22.

    Article  CAS  Google Scholar 

  24. Feroldi, M., Neves, A.C., Borba, C.E., and Alves, H.J., J. Cleaner Prod., 2018, vol. 172, pp. 921–926.

    Article  CAS  Google Scholar 

  25. Sychev, V.V., Vasserman, A.A., Zagoruchenko, V.A., et al., Termodinamicheskie svoistva metana (Thermodynamic Properties of Methane), Moscow: Izd. Standartov, 1979.

  26. Dubinin, M.M., Prog. Surf. Membr. Sci., 1975, vol. 9, pp. 1–70.

    Article  CAS  Google Scholar 

  27. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309–319.

    Article  CAS  Google Scholar 

  28. GOST (State Standard) no. R 55959-2014: Activated Carbon. Standard Test Method for Bulk Density, Moscow: Standartinform, 2014.

  29. Shkolin, A.V. and Fomkin, A.A., Russ. Chem. Bull., 2008, vol. 57, pp. 1799–1805.

    Article  CAS  Google Scholar 

  30. Pribylov, A.A., Serpinskii, V.V., and Kalashnikov, S.M., Zeolites, 1991, vol. 11, pp. 846–849.

    Article  CAS  Google Scholar 

  31. Fomkin, A.A., Shkolin, A.V., Men’shchikov, I.E., et al., Meas. Tech., 2016, vol. 58, no. 12, pp. 1387–1391. https://doi.org/10.1007/s11018-016-0904-6

    Article  CAS  Google Scholar 

  32. Bakaev, V.A., Dokl. Akad. Nauk SSSR, 1966, vol. 167, pp. 369–372.

    CAS  Google Scholar 

  33. Hill, T.L., in Advances in Catalysis and Related Subjects, Frankerburg, Y.I., , Eds., New York: Academic Press, 1952, vol. 4, pp. 211–258.

    Google Scholar 

  34. Fomkin, A.A., Adsorption, 2005, vol. 11, no. 3, pp. 425–436.

    Article  CAS  Google Scholar 

  35. Shkolin, A.V., Fomkin, A.A., and Potapov, S.V., Russ. Chem. Bull., 2017, vol. 66, no. 4, pp. 607–613.

    Article  CAS  Google Scholar 

  36. Bakaev, V.A., Doctoral Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1989.

  37. Fomkin, A.A., Men’shchikov, I.E., Pribylov, A.A., et al., Colloid J., 2017, vol. 79, no. 1, pp. 144–151. https://doi.org/10.1134/S1061933X16060053

    Article  CAS  Google Scholar 

  38. Fomkin, A.A., Doctoral Sci. (Phys.-Math.) Dissertation, Moscow, 1993.

  39. Anuchin, K.M., Fomkin, A.A., Korotych, A.P., and Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 2, pp. 173–177.

    Article  CAS  Google Scholar 

  40. Shkolin, A.V., Fomkin, A.A., Tsivadze, A.Yu., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, pp. 955–963.

    Article  CAS  Google Scholar 

  41. Tovbin, Yu.K., in Adsorbtsiya, adsorbenty i adsorbtsionnye protsessy v nanoporistykh materialakh (Adsorption, Adsorbents, and Adsorptive Processes in Nano-Porous Materials), Moscow: Granitsa, 2011.

  42. Fomkin, A.A., Serpinskii, V.V., and Fidler, K., Izv. Akad. Nauk SSSR, Ser. Khim.,1982, no. 6, p. 1207.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Men’shchikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shchikov, I.E., Fomkin, A.A. & Shkolin, A.V. Thermodynamics of Methane Adsorption in a Microporous Carbon Adsorbent Prepared From Polymer Composition. Prot Met Phys Chem Surf 57, 883–889 (2021). https://doi.org/10.1134/S2070205121050191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121050191

Navigation