Log in

Adsorption Accumulation of Liquefied Natural Gas Vapors

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Adsorption isotherms of methane on AUK, АU-1, and Р-300 active carbons, which possess completely different structural-energy characteristics at the temperatures of 120, 160, and 180 K and pressures of up to 6 bar, as well as the dependences of the specific amount of accumulated methane on these adsorbents on pressure, have been calculated based on the Dubinin’s theory of volumetric filling of micropores. Optimal carbon adsorbent has been chosen for storage of the liquefied natural gas vapors derived from the results. The dependences of differential molar isosteric heat of methane adsorption on the adsorption value at various temperatures have been calculated and plotted for these adsorption materials. An approach to the retention of excess vapor volume that is formed upon storage of liquefied natural gas using adsorption accumulation has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. NTP corresponds to normal temperature (20°C) and pressure (101 325 Pa).

REFERENCES

  1. Solar, C., Blanco, A.G., Vallone, A., and Sapag, K., in Natural Gas, INTECH Open, 2010, pp. 205–244.

    Google Scholar 

  2. SP (Code of Rules) no. 240.1311500.2015: Storages of Liquefied Natural Gas. Fire Safety Requirements, Moscow: The Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters, 2015.

  3. Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Khozina, E.V., and Grachev, V.A., Russ. Chem. Rev., 2018, vol. 87, pp. 950–983.

    Article  CAS  Google Scholar 

  4. Roszak, E.A. and Chorowski, M., Fuel, 2013, vol. 111, pp. 755–762.

    Article  CAS  Google Scholar 

  5. Kayal, S., Sun, B., and Chakraborty, A., Energy, 2015, vol. 91, pp. 772–781.

    Article  CAS  Google Scholar 

  6. Seo-Yul Kim, Jo Hong Kang, Seung-Ik Kim, and Youn-Sang Bae, Chem. Eng. J., 2019, vol. 365, pp. 242–248.

    Article  CAS  Google Scholar 

  7. Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., Knyazeva, M.K., Solovtsova, O.V., Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Khozina, E.V., and Grachev, V.A., Russ. Chem. Rev., 2019, vol. 88, pp. 925–978.

    Article  CAS  Google Scholar 

  8. Kumar, K.V., Preuss, K., Titirici, M.M., and Rodriguez-Reinoso, F., Chem. Rev., 2017, vol. 117, pp. 1796–1825.

    Article  CAS  Google Scholar 

  9. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Yu., Shkolin, A.V., Strizhenov, E.M., and Khozina, E.V., Adsorption, 2017, vol. 23, pp. 327–339.

    Article  Google Scholar 

  10. Strizhenov, E.M., Fomkin, A.A., Zherdev, A.A., and Pribylov, A.A., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, pp. 614–619.

    Article  CAS  Google Scholar 

  11. Dubinin, M.M., Adsorbtsiya i poristost' (Adsorption and Porosity), Moscow: Military Academy of Chemical Defense Named after Marshal of the USSR S.K. Timoshenko, 1972.

  12. ISO 697:1981: Surface Active Agents. Washing Powders. Determination of Apparent Density. Method by Measuring the Mass of a Given Volume, 1981.

  13. Shkolin, A.V., Fomkin, A.A., Tsivadze, A.Yu., Anuchin, K.M., Men’shchikov, I.E., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, pp. 955–963.

    Article  CAS  Google Scholar 

  14. Anuchin, K.M., Fomkin, A.A., Korotych, A.P., and Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, pp. 173–177.

    Article  CAS  Google Scholar 

  15. Strizhenov, E.M., Zherdev, A.A., Petrochenko, R.V., Zhidkov, D.A., Kuznetsov, R.A., Chugaev, S.S., Podchufarov, A.A., and Kurnasov, D.V., Chem. Pet. Eng., 2017, vol. 52, pp. 838–845.

    Article  CAS  Google Scholar 

  16. Lemmon, E.W., Huber, M.L., and McLinden, M.O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1., 2013.

  17. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Yu., Shkolin, A.V., Strizhenov, E.M., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, pp. 493–498.

    Article  Google Scholar 

  18. Shkolin, A.V. and Fomkin, A.A., Russ. Chem. Bull., 2009, vol. 58, pp. 717–721.

    Article  CAS  Google Scholar 

  19. Strizhenov, E.M., Shkolin, A.V., Fomkin, A.A., Sinitsyn, V.A., Zherdev, A.A., Smirnov, I.A., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, pp. 15–21.

    Article  CAS  Google Scholar 

  20. Bakaev, V.A., Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1971, vol. 20, pp. 2516–2520.

Download references

Funding

This work was supported by state order no. 01201353185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Chugaev.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugaev, S.S., Fomkin, A.A., Men’shchikov, I.E. et al. Adsorption Accumulation of Liquefied Natural Gas Vapors. Prot Met Phys Chem Surf 56, 897–903 (2020). https://doi.org/10.1134/S2070205120050081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120050081

Navigation