Log in

Determination of Physico-Mechanical Properties and High Temperature Behavior of Stressed Reinforcing Steels

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This study experimentally investigated the effect of fire-induced high temperature on different grades of stressed steels. The steel in the reinforced concrete structural element is under the influence of static and dynamic loads. The main approach of this study is based on stresses caused by static and dynamic loads on steel reinforcing bars (rebars) and the effect of high temperature during this process. Three different grades of steel (smooth S220, ribbed S420, Tempcore ribbed B500C) in three different diameters (∅12, ∅16, ∅20) were used. The three loading conditions taken into account for reinforced steels subjected to high temperatures were the design yield strength (fyd: fyk/1.15), the characteristic yield strength of steel rebar (fyk) and the exceeding yield strength (fye: fyk × 1.15). Three different temperatures (75, 150 and 300°C) were applied depending on concrete cover thickness and fire duration. Physical and mechanical properties of the test specimens were determined prior to high temperature. Metallographic investigations, hardness measurement, impact toughness, oxidation layer measurement, electrochemical oxidation test and tensile test were performed on steel rebars. Results showed that pre-tension and high temperatures caused drastic changes in steel characteristics. Results provided information about how steels commonly used in the construction of reinforced concrete structures are affected by fire and about at what stage of the fire they start to be affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Kodur, V.K. and Agrawal, A., Fire Technol., 2016, vol. 52, no. 4, p. 967.

    Article  Google Scholar 

  2. Beitel, J. and Iwankiw, N., Fire Prot. Eng., 2005, vol. 27, p. 42.

    Google Scholar 

  3. Alexander, M.G., Beushausen, H.D., Dehn, F., and Moyo, P., Concrete Repair, Rehabilitation and Retrofitting II, London: Taylor and Francis, 2009.

    Google Scholar 

  4. Awoyera, P.O., Akinwumi, I.I., Ede, A.N., and Olofinnade, O.M., IOSR J. Mech. Civ. Eng., 2014, vol. 11, no. 4, p. 17.

    Google Scholar 

  5. Dougherty, L.M., Cerreta, E. K., Gray, G.T., Trujillo, C.P., Lopez, M.F., Vecchio, K.S., and Kusinski, G.J., Metall. Mater. Trans. A, 2009, vol. 40, no. 8, p. 1835.

    Article  CAS  Google Scholar 

  6. Smith, C.I., Kirby, B.R., Lapwood, D.G., Cole, K.J., Cunningham, A.P., and Preston, R.R., Fire Saf. J., 1981, vol. 4 no. 1, p. 21.

    Article  CAS  Google Scholar 

  7. Jansson, R., MATEC Web Conf., 2013, vol. 6, p. 01001.

  8. Bošnjak, J., Sharma, A., and Öttl, C., Mater. Struct., 2018, vol. 51 no. 1, p. 13.

    Article  Google Scholar 

  9. Ergün, A., Kürklü, G., Serhat, B.M., and Mansour, M.Y., Fire Saf. J., 2013, vol. 55, p. 160.

    Article  CAS  Google Scholar 

  10. Kodur, V.K.R. and Alogla, S.M., Mater. Struct., 2017, vol. 50, no. 1, p. 27.

    Article  CAS  Google Scholar 

  11. Wu, B., Li, Y.H., and Chen, S.L., Fire Technol., 2010, vol. 46, no. 1, p. 231.

    Article  Google Scholar 

  12. Shah, A.H., Sharma, U.K., Bhargava, P., Reddy, G.R., Singh, T., and Lakhani, H., in Advances in Structural Engineering, New Delhi: Springer, 2015.

    Google Scholar 

  13. Topçu, İ.B. and Karakurt, C., Res. Lett. Mater. Sci., 2008, vol. 2008, Article ID 814137.

    Article  CAS  Google Scholar 

  14. Kumar, A. and Kumar, V., J. Inst. Eng. (India), Civ. Eng. Div., 2003, vol. 84, p. 165.

    Google Scholar 

  15. Li, G., Wang, P., and Shouchao, J., J. Constr. Steel Res., 2007, vol. 63, no. 9, p. 1175.

    Article  Google Scholar 

  16. Liu, T.C.H., Fahad, M.K., and Davies, J.M., J. Constr. Steel Res., 2002, vol. 58, no. 9, p. 1211.

    Article  Google Scholar 

  17. Correia, A.J.M. and Rodrigues, J.P.C., J. Constr. Steel Res., 2011, vol. 67, no. 4, p. 593.

    Article  Google Scholar 

  18. Khalaf, J., Huang, Z., and Fan, M., Comput. Struct., 2016, vol. 162, p. 1.

    Article  Google Scholar 

  19. Huang, Z., Eng. Struct., 2010, vol. 32, no. 11, p. 3660.

    Article  Google Scholar 

  20. Diederichs, U. and Schneider, U., Mag. Concr. Res., 1981, vol. 33, p. 75.

    Article  CAS  Google Scholar 

  21. Morley, P. and Royles, R., Mag. Concr. Res., 1983, vol. 35, p. 67.

    Article  Google Scholar 

  22. Haddad, R., Al-Saleh, R., Al-Akhras, N.M., Fire Saf. J., 2008, vol. 43, p. 334.

    Article  CAS  Google Scholar 

  23. Hassan, S., J. Eng. Dev., 2012, vol. 16, p. 30.

    Google Scholar 

  24. Bingöl, A.F. and Gül, R., Fire Saf. J., 2009, vol. 44, p. 854.

    Article  CAS  Google Scholar 

  25. Khoury, G.A., Prog. Struct. Eng. Mater., 2000, vol. 2, no. 4, p. 429.

    Article  Google Scholar 

  26. Tariq, F. and and Bhargava, P., Constr. Build. Mater., 2018, vol. 190, p. 551.

    Article  Google Scholar 

  27. Elghazouli, A.Y., Cashell, K.A., and Izzuddin, B.A., Fire Saf. J., 2009, vol. 44, no. 6, p. 909.

    Article  Google Scholar 

  28. Felicetti, R., Gambarova, P.G., and Meda, A., Constr. Build. Mater., 2009, vol. 23, no. 12, p. 3546.

    Article  Google Scholar 

  29. Neves, I.C., Rodrigues, J.P.C., and Loureiro, A.D.P., J. Mater. Civ. Eng., 1996, vol. 8, no. 4, p. 189.

    Article  CAS  Google Scholar 

  30. Wang, W.Y., Liu, B., and Kodur, V., J. Mater. Civ. Eng., 2012, vol. 25, no. 2, p. 174.

    Article  CAS  Google Scholar 

  31. Cooke, G.M., Fire Saf. J., 1988, vol. 13, no. 1, p. 45.

    Article  CAS  Google Scholar 

  32. Qiang, X., Bijlaard, F.S., and Kolstein, H., Eng. Struct., 2012, vol. 35, p. 1.

    Article  Google Scholar 

  33. Lee, J., Engelhardt, M.D., and Taleff, E.M., Eng. J., 2012, vol. 49, no. 1, p. 33.

    Google Scholar 

  34. Shen, R., Rong, K., and Feng, L.Y., Build. Sci. Res. Sichuan, 1991, vol. 17, no. 2, p. 5.

    Google Scholar 

  35. Wang, Q., Wu, H., Xu, Y., Yang, Y., and Huo, Z., J. Build. Struct., 2011, vol. 32, no. 2, p. 120.

    Google Scholar 

  36. Li, Y., Cao, S., Liang, H., Ni, X., and **g, D., Eng. Struct., 2018, vol. 172, p. 497.

    Article  Google Scholar 

  37. Tavallali, H., Lepage, A., Rautenberg, J.M., and Pujol, S., ACI Struct. J., 2014, vol. 111, no. 5, p. 1037.

    Article  Google Scholar 

  38. Chun, S.C., ACI Struct. J., 2015, vol. 112, no. 6, p. 679.

    Article  Google Scholar 

  39. Ibarra, L. and Bishaw, B., ACI Struct. J., 2016, vol. 113, p. 1.

    Article  Google Scholar 

  40. Alaee, P. and Li, B., Eng. Struct., 2017, vol. 145, p. 305.

    Article  Google Scholar 

  41. Ou, Y.C. and Kurniawan, D.P., ACI Struct. J., 2015, vol. 112, no. 1, p. 12.

    Google Scholar 

  42. Sokoli, D. and Ghannoum, W.M., ACI Struct. J., 2016, vol. 113, no. 3, p. 605.

    Article  Google Scholar 

  43. Proestos, G.T., Bae, G.M., Cho, J.Y., Bentz, E.C., and Collins, M.P., ACI Struct. J., 2016, vol. 113, no. 5, p. 917.

    Article  Google Scholar 

  44. Cheng, M.Y., Hung, S.C., Lequesne, R.D., and Lepage, A., ACI, 2016. Cheng, M.Y., Hung, S.C., Lequesne, R.D., and Lepage, A., ACI Struct. J., 2016, vol. 113, no. 5, p. 1065.

    Article  Google Scholar 

  45. Alaee, P. and Li, B., J. Struct. Eng., 2017, vol. 143, no. 7, p. 04017038.

    Article  Google Scholar 

  46. Rojob, H. and El-Hacha, R., Eng. Struct., 2018, vol. 169, p. 107.

    Article  Google Scholar 

  47. ACI 216R-89: Guide for Determining the Fire Endurance of Concrete Elements, 1989.

  48. EN 1992-1-2: Eurocode 2: Design of Concrete Structures—Part 1-2: General Rules – Structural Fire Design, 2004.

  49. TS 708: Steel for the Reinforcement of Concrete—Reinforcing Steel, 2016.

  50. ASTM A615/A615M-18e1: Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement, West Conshohocken, PA: ASTM Int., 2018.

  51. TS 500: Requirements for design and construction of reinforced concrete structures, 2000.

  52. Apostolopoulos, C.A. and Michalopoulos, D., J. Mater. Eng. Perform., 2007, vol. 16, no. 1, p. 63.

    Article  CAS  Google Scholar 

  53. ASTM E23-18: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, West Conshohocken, PA: ASTM Int., 2018.

  54. Nikolaou, J. and Papadimitriou, G. D., Int. J. Impact Eng., 2005, vol. 31, no. 8, p. 1065.

    Article  Google Scholar 

  55. Pektaş, F. M., Master Thesis, AKU: Inst. of Nat. and App. Sci., 2016.

Download references

ACKNOWLEDGMENTS

This work was supported by Afyon Kocatepe University Scientific Research Unit. Project no. AKU BAP: 16.KARİYER.185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Kürklü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökhan Kürklü Determination of Physico-Mechanical Properties and High Temperature Behavior of Stressed Reinforcing Steels. Prot Met Phys Chem Surf 55, 924–935 (2019). https://doi.org/10.1134/S2070205119050095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119050095

Keywords:

Navigation