Log in

Electrodeposition of Nanocrystalline Nickel Coatings from a Deep Eutectic Solvent with Water Addition

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The electrodeposition of nanocrystalline Ni coatings from electroplating baths containing deep eutectic solvents (analogues of room-temperature ionic liquids) is studied. To improve physicochemical properties of electrolytes and enhance mechanical properties and corrosion resistance of Ni films, we suggest introducing extra water into plating baths based on a deep eutectic solvent. The effect of water addition on the electrodeposition of nickel coatings is investigated using an electrolyte containing choline chloride, ethylene glycol, nickel chloride and water in the molar ratio of 1: 2: 1: x where x is equal to 6, 9, 12, 15 or 18 (i.e., Ethaline + NiCl2 + xH2O). The introduction of water into the liquid mixture results in an increase in conductivity and a decrease in viscosity. The addition of extra water leads to more uniform and finer grained deposits. The electrodeposited Ni coatings with an average crystallite size of about 5 to 7 nm have an fcc crystal nanostructure. An increase in water content in the plating bath results in an increase in the microhardness of deposits and the inverse Hall–Petch effect is observed. According to electrochemical impedance spectroscopy measurements, the coatings with higher corrosion resistance are deposited from Ni plating bath containing water addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorelov, S.M., Tsupak, T.E., Vinokurov, E.G., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 622.

    Article  Google Scholar 

  2. Ünal, H.I., Zor, S., Erten, U., and Gökergil, H.M., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p.600.

    Article  Google Scholar 

  3. Danilov, F.I., Samofalov, V.N., Sknar, I.V., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p.812.

    Article  Google Scholar 

  4. Najafi Sayar, P., and Bahrololoom, M.E., J. Appl. Electrochem., 2009, vol. 39, p. 2489.

    Article  Google Scholar 

  5. Orináková, R., Turonová, A., Kladeková, D., et al., J. Appl. Electrochem., 2006, vol. 36, p.957.

    Article  Google Scholar 

  6. Hashemzadeh, M., Raeissi, K., Ashrafizadeh, F., and Khorsand, S., Surf. Coat. Technol., 2015, vol. 283, p.318.

    Article  Google Scholar 

  7. Ma, C., Wang, S.C., and Walsh, F.C., Trans. Inst. Met. Finish., 2015, vol. 93, p.8.

    Article  Google Scholar 

  8. Ma, C., Wang, S.C., and Walsh, F.C., Trans. Inst. Met. Finish., 2015, vol. 93, p.275.

    Article  Google Scholar 

  9. Kumar, U.P., Kennady, C.J., and Zhou, Q., Surf. Coat. Technol., 2015, vol. 283, p.148.

    Article  Google Scholar 

  10. El-Sherik, A.M. and Erb, U., J. Mater. Sci., 1995, vol. 30, p. 5743.

    Article  Google Scholar 

  11. Dennis, J.K. and Such, T.E., Nickel and Chromium Plating, Elsevier, 2013, 2015.

    Google Scholar 

  12. Bicelli, L.P., Bozzini, B., Mele, C., and D’Urzo, L., Int. J. Electrochem. Sci., 2008, vol. 3, p.356.

    Google Scholar 

  13. Moti', E., Shariat, M.H. and Bahrololoom, M.E., J. Appl. Electrochem., 2008, vol. 38, p.605.

    Article  Google Scholar 

  14. Smith, E.L., Abbott, A.P., and Ryder, K.S., Chem. Rev., 2014, vol. 114, p. 11060.

    Article  Google Scholar 

  15. Abbott, A.P., Capper, G., Davies, D.L., et al., Chem. Commun., 2003, p.70.

    Google Scholar 

  16. Abbott, A.P., Capper, G., Davies, D.L., and Rasheed, R., Inorg. Chem., 2004, vol. 43, p. 3447.

    Article  Google Scholar 

  17. Abbott, A.P., Ryder, K.S., and König, U., Trans. Inst. Met. Finish., 2008, vol. 86, p.196.

    Article  Google Scholar 

  18. Gu, C.D., You, Y.H., Yu, Y.L., et al., Surf. Coat. Technol., 2011, vol. 205, p. 4928.

    Article  Google Scholar 

  19. Srivastava, M., Yoganandan, G., and William Grips, V.K., Surf. Eng., 2012, vol. 28, p.424.

    Article  Google Scholar 

  20. Gu, C. and Tu, J., Langmuir, 2011, vol. 27, p. 10132.

    Article  Google Scholar 

  21. Abbott, A.P., El Ttaib, K., Ryder, K.S., and Smith, E.L., Trans. Inst. Met. Finish., 2008, vol. 86, p.234.

    Article  Google Scholar 

  22. Abbott, A.P., Ballantyne, A., Harris, R.C., et al., Electrochim. Acta, 2015, vol. 176, p.718.

    Article  Google Scholar 

  23. Shah, D. and Mjalli, F.S., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 23900.

    Article  Google Scholar 

  24. De Vreese, P., Brooks, N.R., Van Hecke, K., et al., Inorg. Chem., 2012, vol. 51, p. 4972.

    Article  Google Scholar 

  25. McCalman, D.C., Sun, L., Zhang, Y., et al., J. Phys. Chem. B, 2015, vol. 119, p. 6018.

    Article  Google Scholar 

  26. Du, C., Zhao, B., Chen, X.-B., et al., Sci. Rep., 2016, vol. 6, p. 29225.

    Article  Google Scholar 

  27. Protsenko, V.S., Kityk, A.A., Shaiderov, D.A., and Danilov, F.I., J. Mol. Liq., 2015, vol. 212, p.716.

    Article  Google Scholar 

  28. Bobrova, L.S., Danilov, F.I., and Protsenko, V.S., J. Mol. Liq., 2016, vol. 223, p.48.

    Article  Google Scholar 

  29. Ali, M.R., Rahman, Md.Z., and Saha, S.S., Indian J. Chem. Technol., 2014, vol. 21, p.127.

    Google Scholar 

  30. Hall, E.O., Proc. Phys. Soc., Sect. B, 1951, vol. 64, p.747.

    Article  Google Scholar 

  31. Petch, N.J., Acta Metall., 1964, vol. 12, p.59.

    Article  Google Scholar 

  32. Wang, N., Wang, Z., Aust, K.T., and Erb, U., Mater. Sci. Eng., A, 1997, vol. 237, p.150.

    Article  Google Scholar 

  33. Carlton, C.E. and Ferreira, P.J., Acta Mater., 2007, vol. 55, p. 3749.

    Article  Google Scholar 

  34. Hamed, E., Abd El-Rehim, S.S., El-Shahat, M.F., and Shaltot, A.M., Mater. Sci. Eng., B, 2012, vol. 177, p.441.

    Article  Google Scholar 

  35. Mulder, W.H. and Sluyters, J.H., Electrochim. Acta, 1988, vol. 33, p.303.

    Article  Google Scholar 

  36. Rammelt, U. and Reinhard, G., Electrochim. Acta, 1990, vol. 35, p. 1045.

    Article  Google Scholar 

  37. Wang, L., Zhang, J., Gao, Y., et al., Sci. Mater., 2006, vol. 55, p. 657.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Protsenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, F.I., Protsenko, V.S., Kityk, A.A. et al. Electrodeposition of Nanocrystalline Nickel Coatings from a Deep Eutectic Solvent with Water Addition. Prot Met Phys Chem Surf 53, 1131–1138 (2017). https://doi.org/10.1134/S2070205118010203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118010203

Navigation