Log in

Physicochemical and Catalytic Properties of Bifunctional Catalysts with Different Contents of Zeolite ZSM-22 in the Hydrodeoxygenation of Sunflower Oil

  • CATALYSIS IN OIL REFINING INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The authors study the effect of the content of zeolite ZSM-22 (15–70 wt %) in a support on the physicochemical properties of Pt/ZSM-22–Al2O3 catalysts. The dependence of the yield and composition of sunflower oil hydrodeoxygenation products on these catalysts on the temperature (310–340°C), pressure (3‒5 MPa), and weight hourly space velocity (WHSV) (0.8–3 h−1) is determined. The possibility is shown of the full hydrodeoxygenation of sunflower oil with the formation of C5+ hydrocarbons containing up to 72% of iso-paraffins with yields of 75–79 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Huber, G.W., Iborra, S., and Corma, A., Chem. Rev., 2006, vol. 106, no. 9, pp. 4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  2. Sivasamy, A., Cheah, K.Y., Fornasiero, P., Kemausuor, F., Zinoviev, S., and Miertus, S., ChemSusChem, 2009, vol. 2, no. 4, pp. 278–300. https://doi.org/10.1002/cssc.200800253

    Article  CAS  PubMed  Google Scholar 

  3. Choudhary, T.V. and Phillips, C.B., Appl. Catal., A, 2011, vol. 397, nos. 1–2, pp. 1–12. https://doi.org/10.1016/j.apcata.2011.02.025

  4. Khan, S., Kay Lup, A.N., Queshi, K.M., Abnisa, F., Wan Daud, W.M.A., Patah, M.F.A., Anal. Appl. Pyrolysis, 2019, vol. 140, pp. 1–24. https://doi.org/10.1016/j.jaap.2019.03.005

    Article  CAS  Google Scholar 

  5. Douvartzides, S.L., Charisiou, N.D., Papageridis, K.N., and Goula, M.A., Energies, 2019, vol. 12, no. 5, article no. 809. https://doi.org/10.3390/en12050809

    Article  CAS  Google Scholar 

  6. Smirnova, M.Yu., Kikhtyanin, O.V., Rubanov, A.E., Trusov, L.I., and Echevskii, G.V., Catal. Ind., 2013, vol. 5, no. 3, pp. 253–259. https://doi.org/10.1134/S2070050413030112

    Article  Google Scholar 

  7. Pérez-Cisneros, E.S., Sales-Cruz, M., Lobo-Oehmichen, R., and Viveros-García, T., Comput. Chem. Eng., 2017, vol. 105, pp. 105–122. https://doi.org/10.1016/j.compchemeng.2017.01.018

    Article  CAS  Google Scholar 

  8. Herskowitz, M., Landau, M.V., Reizner, Y., and Ber-ger, D., Fuel, 2013, vol. 111, pp. 157–164. https://doi.org/10.1016/j.fuel.2013.04.044

    Article  CAS  Google Scholar 

  9. Wang, C., Liu, Q., Liu, X., Yan, L., Luo, C., Wang, L., Wang, B., and Tian, Z., Chin. J. Catal., 2013, vol. 34, no. 6, pp. 1128–1138. https://doi.org/10.1016/S1872-2067(11)60524-X

    Article  CAS  Google Scholar 

  10. Wang, C., Tian, Z., Wang, L., Xu, R., Liu, Q., Qu, W., Ma, H., and Wang, B., ChemSusChem, 2012, vol. 5, no. 10, pp. 1974–1983. https://doi.org/10.1002/cssc.201200219

    Article  CAS  PubMed  Google Scholar 

  11. Wang, C., Liu, Q., Song, J., Li, W., Li, P., Xu, R., Ma, H., and Tian, Z., Catal. Today, 2014, vol. 234, pp. 153–160. https://doi.org/10.1016/j.cattod.2014.02.011

    Article  CAS  Google Scholar 

  12. Zhang, M., Chen, Y., Wang, L., Zhang, Q., Tsang, C.-W., and Liang, C., Ind. Eng. Chem. Res., 2016, vol. 55, no. 21, pp. 6069–6078. https://doi.org/10.1021/acs.iecr.6b01163

    Article  CAS  Google Scholar 

  13. Martens, J.A., Verboekend, D., Thomas, K., Vanbutsele, G., Pérez-Ramírez, J., and Gilson, J.-P., Catal. Today, 2013, vols. 218–219, pp. 135–142. https://doi.org/10.1016/j.cattod.2013.03.041

  14. Hancsók, J., Krár, M., Magyar, S., Boda, L., Holló, A., and Kalló, D., Microporous Mesoporous Mater., 2007, vol. 101, nos. 1–2, pp. 148–152. https://doi.org/10.1016/j.micromeso.2006.12.012

  15. Nepomnyashchiy, A.A., Buluchevskiy, E.A., Lavrenov, A.V., Yurpalov, V.L., Gulyaeva, T.I., Leont’eva, N.N., and Talzi, V.P., Russ. J. Appl. Chem., 2017, vol. 90, no. 12, pp. 1944–1952. https://doi.org/10.1134/S1070427217120084

    Article  CAS  Google Scholar 

  16. Parmar, S., Pant, K.K., John, M., Kumar, K., Pai, S.M., and Newalkar, B.L., Energy Fuels, 2015, vol. 29, no. 2, pp. 1066–1075. https://doi.org/10.1021/ef502591q

    Article  CAS  Google Scholar 

  17. Chi, K., Zhao, Z., Tian, Z., Hu, S., Yan, L., Li, T., Wang, B., Meng, X., Gao, S., Tan, M., and Liu, Y., Pet. Sci., 2013, vol. 10, no. 2, pp. 242–250. https://doi.org/10.1007/s12182-013-0273-6

    Article  CAS  Google Scholar 

  18. Liu, S., Ren, J., Zhu, S., Zhang, H., Lv, E., Xu, J., and Li, Y.-W., J. Catal., 2015, vol. 330, pp. 485–496. https://doi.org/10.1016/j.jcat.2015.07.027

    Article  CAS  Google Scholar 

  19. Liu, S., Ren, J., Zhang, H., Lv, E., Yang, Y., and Li, Y.-W., J. Catal., 2016, vol. 335, pp. 11–23. https://doi.org/10.1016/j.jcat.2015.12.009

    Article  CAS  Google Scholar 

  20. Kim, S.K., Han, J.Y., Lee, H.S., Yum, T., Kim, Y., and Kim, J., Appl. Energy, 2014, vol. 116, pp. 199–205. https://doi.org/10.1016/j.apenergy.2013.11.062

    Article  CAS  Google Scholar 

  21. Alcalá, R., Mavrikakis, M., and Dumesic, J.A., J. Catal., 2003, vol. 218, no. 1, pp. 178–190. https://doi.org/10.1016/S0021-9517(03)00090-3

    Article  CAS  Google Scholar 

  22. Chen, N., Gong, S., Shirai, H., Watanabe, T., and Qian, E.W., Appl. Catal., A, 2013, vol. 466, pp. 105–115. https://doi.org/10.1016/j.apcata.2013.06.034

  23. Sankaranarayanan, T.M., Banu, M., Pandurangan, A., and Sivasanker, S., Bioresour. Technol., 2011, vol. 102, no. 22, pp. 10717–10723. https://doi.org/10.1016/j.biortech.2011.08.127

    Article  CAS  PubMed  Google Scholar 

  24. Anand, M. and Sinha, A.K., Bioresour. Technol., 2012, vol. 126, pp. 148–155. https://doi.org/10.1016/j.biortech.2012.08.105

    Article  CAS  PubMed  Google Scholar 

  25. Guzman, A., Torres, J.E., Prada, L.P., and Nuñez, M.L., Catal. Today, 2010, vol. 156, nos. 1–2, pp. 38–43. https://doi.org/10.1016/j.cattod.2009.11.015

Download references

ACKNOWLEDGMENTS

The authors are grateful to engineers L.A. Buluchevskaya and E.N. Kudrya, junior researcher I.V. Muromtsev, researchers R.R. Izmailov and A.V. Babenko, and first-category electrical engineer S.N. Evdokimov for their work in studying the catalysts and the composition of liquid products in the sunflower oil hydrodeoxygenation process.

Our physicochemical studies were performed on equipment at the Boreskov Institute’s National Center for the Investigation of Catalysts.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education within the governmental assignment for Boreskov Institute of Catalysis (project AAAA-A21-121011890075-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nepomnyashchii.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by E. Glushachenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nepomnyashchii, A.A., Saibulina, E.R., Buluchevskiy, E.A. et al. Physicochemical and Catalytic Properties of Bifunctional Catalysts with Different Contents of Zeolite ZSM-22 in the Hydrodeoxygenation of Sunflower Oil. Catal. Ind. 16, 161–169 (2024). https://doi.org/10.1134/S2070050424700065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050424700065

Keywords:

Navigation