Log in

Formal foundations for the origins of human consciousness

  • Review Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

In the framework of p-adic analysis (the simplest version of analysis on trees in which hierarchic structures are presented through ultrametric distance) applied to formalize psychic phenomena, we would like to propose some possible first hypotheses about the origins of human consciousness centered on the basic notion of time symmetry breaking as meant according to quantum field theory of infinite systems. Starting with Freud’s psychophysical (hydraulic) model of unconscious and conscious flows of psychic energy based on the three-orders mental representation, the emotional order, the thing representation order, and the word representation order, we use the p-adic (treelike) mental spaces to model transition from unconsciousness to preconsciousness and then to consciousness. Here we explore theory of hysteresis dynamics: conscious states are generated as the result of integrating of unconscious memories. One of the main mathematical consequences of our model is that trees representing unconscious and consciousmental states have to have different structures of branching and distinct procedures of clustering. The psychophysical model of Freud in combination with the p-adic mathematical representation gives us a possibility to apply (for a moment just formally) the theory of spontaneous symmetry breaking of infinite dimensional field theory, to mental processes and, in particular, to make the first step towards modeling of interrelation between the physical time (at the level of the emotional order) and psychic time at the levels of the thing and word representations. Finally, we also discuss some related topological aspects of the human unconscious, following Jacques Lacan’s psychoanalytic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, R. Cianci and A. Yu. Khrennikov, “p-Adic valued quantization,” p-Adic Numbers Ultrametric Anal. Appl. 1, 91–104 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Andersson, Studies on the Prehistory of Psychoanalysis, Scandinavian University Books (Svenska Bokförlaget/Norstedts-Bonniers, Stockholm, 1962).

    Google Scholar 

  3. V. Anashin and A. Khrennikov, Applied Algebraic Dynamics (Walter de Gruyter GmbH & Co., Berlin, 2009).

    Book  MATH  Google Scholar 

  4. J. Araujo-Gomez, B. Diarra and A. Escassut (Eds.), Advances in non-Archimedean Analysis (Amer. Math. Society (AMS), Providence, 2011).

    Book  MATH  Google Scholar 

  5. F. Baldassarri, S. Bosch and B. Dwork (Eds.), p-Adic Analysis (Springer-Verlag, Berlin & Heidelberg, 1990).

    Book  MATH  Google Scholar 

  6. P. Bandyopadhyay, Geometry, Topology and Quantum Field Theory (Springer Science & Business Media, B.V., Dordrecht, 2003).

    Book  MATH  Google Scholar 

  7. R. Barbieri, Lectures on the ElectroWeak Interactions (Scuola Normale Superiore di Pisa, Edizioni della Normale, Pisa, 2007).

    MATH  Google Scholar 

  8. A. Belleni-Morante, Applied Semigroups and Evolution Equations (Clarendon Press, Oxford, 1979).

    MATH  Google Scholar 

  9. E. G. Beltrametti, “Note on the p-adic generalization of Lorentz transformations,” Discr. Math. 1, 239–246 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Bertotti, Hysteresis in Magnetism. For Physicists, Materials Scientists, and Engineers (Academic Press, Inc., San Diego, 1998).

    Google Scholar 

  11. S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean Analysis. Systematic Approach to Rigid Analytic Geometry (Springer-Verlag, Berlin & Heidelberg, 1984).

    Book  MATH  Google Scholar 

  12. M. Brokate, N. Kenmochi, I. Müller, J. F. Rodriguez and C. Verdi, Phase Transitions and Hysteresis (Springer-Verlag, Berlin & Heidelberg, 1994).

    Book  Google Scholar 

  13. R. L. Capa, C. Z. Duval, D. Blaison and A. Giersch, “Patients with schizophrenia selectively impaired in temporal order judgments,” Schizophrenia Research 156 (1), 51–55 (2014).

    Article  Google Scholar 

  14. R. Chemana and B. Vandermersch, Dizionario di psicoanalisi (Gremese Editore, Roma, 2005).

    Google Scholar 

  15. Y. Choquet-Bruhat, C. De Witt-Morette and M. Dillard-Bleick, Analysis, Manifolds and Physics, Revised Edition (North-Holland Publ. Comp., Amsterdam, 1982).

    MATH  Google Scholar 

  16. L. Conti and S. Principe, Salute mentale e società. Fondamenti di psichiatria sociale (Piccin Nuova Libraria, Padova, 1989).

    Google Scholar 

  17. A. Culioli, L’arco e la freccia. Scritti scelti a cura di Francesco La Mantia (Società editrice il Mulino, Bologna, 2014).

    Google Scholar 

  18. M. De Glas and J-P. Descles, “Du temps linguistique comme idéalisation d’un temps phénoménal,” Intellectica 23 (2), 159–192 (1996).

    Google Scholar 

  19. A. de Mijolla (Ed.), International Dictionary of Psychoanalysis. Macmillan Reference USA (An imprint of the Gale Group, Farmington Hills,MI, 2005).

    Google Scholar 

  20. A. De Waelhens and W. Ver Eecke, Phenomenology and Lacan on Schizophrenia, after the Decade of the Brain (Leuven Univ. Press, Leuven, 2001).

    Google Scholar 

  21. T. Diagana, Non-Archimedean Linear Operators and Applications (Nova Science Publ., Inc.,New York, 2009).

    MATH  Google Scholar 

  22. B. Diarra, A. Escassut, A. K. Katsaras and L. Narici (Eds.), Ultrametric Functional Analysis (Amer. Math. Society (AMS), Providence, 2005).

    Book  MATH  Google Scholar 

  23. A. Dijksterhuis and L. F. Nordgren, “A theory of unconsciouss thought,” Perspectives Psychol. Science 1, 95–109 (2006).

    Article  Google Scholar 

  24. B. Dragovich, S. V. Kozyrev and I. V. Volovich, “The workshop on p-adic methods for modeling of complex systems,” p-Adic Numbers Ultrametric Anal. Appl. 5 (3), 246–248 (2013).

    Article  MathSciNet  Google Scholar 

  25. B. Dragovich, “p-Adic and adelic cosmology: p-Adic origin of dark energy and dark matter,” Proceedings of the 2nd Int. Conf. on p-AdicMathematical Physics, AIP Conference Proc. 826, 25–42 (Melville, NY, 2006).

    Article  MathSciNet  MATH  Google Scholar 

  26. E.H. Feng and G. E. Crooks, “Lenghts of time arrow,” Phys. Rev. Lett. 101, 090602/1–4 (2008).

  27. R. M. Fernandes, S. A. Kivelson and E. Berg, “Is there a hidden chiral density-wave in the iron-based superconductors?,” ar**v: 1504.03656v1 [cond-mat.supr-con] (2015).

    Google Scholar 

  28. R. Finelli, “Rappresentazione e linguaggio in Freud: a partire dal “Compendio di psicoanalisi”,” Consecutio Temporum, Rivista di critica della postmodernitè 1, 112–125 (2011).

    Google Scholar 

  29. R. M. Flügel, Chirality and Life. A Short Introduction to the Early Phases of Chemical Evolution (Springer-Verlag, Berlin and Heidelberg, 2011).

    Google Scholar 

  30. G. Fossi, Le teorie psicoanalitiche (Piccin Nuova Libraria, Padova, 1984).

    Google Scholar 

  31. G. Fossi, La psicologia dinamica: un’ereditè del XX secolo (Edizioni Borla, Roma, 1983).

    Google Scholar 

  32. S. Freud, The Standard Edition of Complete Psychological Works of Sigmund Freud, Edited and Translated by J. Strachey, Vols. I-XXIV (The Hogarth Press, London, 1957).

  33. U. Galimberti, Dizionario di Psicologia (UTET Libreria, Torino, 2006).

    Google Scholar 

  34. V. S. Gayathri and M. Rao, “Fluctuation-induced chiral symmetry breaking in autocatalytic reactiondiffusion systems,” Europhys. Lett. 80 (2), 28001 (2007).

    Article  Google Scholar 

  35. A. Giersch, L. Lalanne, M. van Assche and M. A. Elliott, “On disturbed time continuity in schizophrenia: an elementary impairment in visual perception?” Front. Psych. doi: 10.3389/fpsyg.2013.00281.

  36. S. Hildebrand and A. Tromba, The Parsimonious Universe. Shape and Form in the Natural World, (Springer-Verlag, New York, 1996).

    Book  MATH  Google Scholar 

  37. M. W. Hirsch, Differential Topology (Springer-Verlag, New York, 1976).

    Book  MATH  Google Scholar 

  38. P-J. Hsu, T. Mauerer, M. Vogt, J. J. Yang, Y. Seok Oh, S-W. Cheong, M. Bode and W. Wu, “Hysteretic melting transition of a soliton lattice in a commensurate charge modulation,” Phys. Rev. Lett. 111 (26), 266401–6 (2013).

    Article  Google Scholar 

  39. G. Iurato and A. Yu. Khrennikov, “Hysteresis model of unconscious-conscious interconnection: exploring dynamics on m-adic trees,” p-Adic Numbers Ultrametric Anal. Appl. 7 (4), 312–321 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Iurato, “Mathematical thought in the light ofMatte Blanco work,” Phil. Math. Educ. J. 27, (2013).

  41. G. Iurato, “Σύμβoλoν: An attempt toward the early origins. Part 1,” Lang. & Psychoan. 2 (2), 77–120 (2013).

    Article  Google Scholar 

  42. G. Iurato, “Σύμβoλoν: An attempt toward the early origins. Part 2,” Lang. & Psychoan. 2 (2), 121–160 (2013).

    Article  Google Scholar 

  43. G. Iurato, “The dawning of computational psychoanalysis. A proposal for some first elementary formalization attempts,” Int. J.Cogn. Inf.Nat. Intell. 8 (4), 50–82 (2014).

    Article  Google Scholar 

  44. G. Iurato, “On Jacques Lacan psychosis theory and ERPs analysis,” J. Biol. Nat. 5 (4), 234–240 (2016).

    Google Scholar 

  45. G. Iurato and A. Yu. Khrennikov, “Hysteresis model of unconscious-conscious interconnection: exploring dynamics on m-adic trees,” p-Adic Numbers Ultrametric Anal. Appl. 7 (4), 312–321 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  46. I. Jancskar and A. Ivanyi, “Preisach hysteresis model for non-linear 2D heat diffusion,” Phys. B. Cond. Matt. 372 (1–2), 222–225 (2006).

    Article  Google Scholar 

  47. J. P. Jones, D. Sato, H. Wada and D. Wiens, “Diophantine representation of the set of prime numbers,” Amer.Math.Month. 83 (6), 449–464 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Jucha, H. Xu, A. Pumir and E. Bodenschatz, “Time-symmetry breaking in turbulence,” Phys. Rev. Lett. 113 (5), 054501/1-5 (2014).

    Google Scholar 

  49. R. Kafri, O. Markovitch and D. Lancet, “Spontaneous chiral symmetry breaking in early molecular networks,” Biology Dir. 5 (38), 1–13 (2010).

    Google Scholar 

  50. G. K. Kalisch, “On p-adic Hilbert spaces,” Annal. Math._II Ser. 48 (1), 180–192 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  51. R. E. Kastner, “The broken symmetry of time,” D.P. Sheehan (Ed.), Quantum Retrocausation: Theory and Experiment, 13-14 June 2011, San Diego, CA., AIP Conf. Proc. 1408 (AIP Publ. LLC, Melville, NY, 2011).

    Google Scholar 

  52. A. K. Katsaras, W. H. Schikhof end L. Van Hamme (Eds.), p-Adic Functional Analysis (Marcel Dekker, Inc., New York, 2001).

    Book  MATH  Google Scholar 

  53. J. L. Kelley, General Topology (Springer-Verlag, Inc., New York, 1975).

    MATH  Google Scholar 

  54. A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publ., Dordrecht, 1997).

    Book  MATH  Google Scholar 

  55. A. Yu. Khrennikov, “Toward an adequate mathematical model of mental space: Conscious/unconscious dynamics on m-adic trees,” Biosystems 90 (3), 656–675 (2007).

    Article  Google Scholar 

  56. A. Yu. Khrennikov, Classical and Quantum Mental Models and Freud’s Theory of Unconscious Mind (VäxjöUniv. Press, Växjö, Sweden, 2002).

    Google Scholar 

  57. A. Yu. Khrennikov, “p-Adic quantum mechanics with p-adic valued functions,” J.Math. Phys. 32, 932–937 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Köhler, Freuds Psychoanalyse. Eine Einführung, Auflage 2 (W. Kohlhammer GmbH, Stuttgart, 2007).

    Google Scholar 

  59. A. L. Kovacs, “Degeneracy and asymmetry in Biology,” L. Lam and H.C. Morris (Eds.), Nonlinear Structures in Physical Systems. Pattern Formation, Chaos, and Waves, Proc. 2nd Woodward Conf. San Jose State University (November 17-18), pp. 325–330 (Springer-Verlag, Inc., New York, 1989).

    Google Scholar 

  60. J. Lacan, The Seminar of Jacques Lacan. Book X: The Anxiety, pp. 1962–63, J. A. Miller (Ed.), Transl. by A. R. Price (Polity Press, Malden, MA, 2014).

  61. F. La Mantia, “Sulla topologia dei domini nozionali. Interno, esterno, frontiera,” Versus. Quaderni di Studi Semiotici 118, 171–183 (2014).

    Google Scholar 

  62. L. D. Landau, A Course in Theoretical Physics. Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960).

    Google Scholar 

  63. J. Laplanche and J-B. Pontalis, The Language of Psycho-Analysis (W.W. Norton & Company, Inc., New York, 1974).

    Google Scholar 

  64. J. Laplanche, Essays on Otherness (Routledge, London, 1999).

    Google Scholar 

  65. R. Lauro-Grotto, “The unconscious as an ultrametric set,” Amer. Imago 64 (4), 535–543 (2007).

    Article  Google Scholar 

  66. G. C. Lepschy, La linguistica strutturale, Nuova edizione, Giulio Einaudi editore, (Torino, 1990).

    Google Scholar 

  67. T. D. Little and R. E. Showalter, “Semilinear parabolic equations with Preisach hysteresis,” Diff. Integ. Equat. 7 (3–4), 1021–1040 (1994).

    MathSciNet  MATH  Google Scholar 

  68. D. A. Madore, A First Introduction to p-Adic Numbers, online version of 7th December 2000.

    Google Scholar 

  69. I. Matte Blanco, The Unconscious as Infinite Sets. An Essay in Bi-Logic (Karnac Books, London, 1975).

    Google Scholar 

  70. Yu. V. Matiyasevich, “Formulas for prime numbers,” S. Tabachnikov (Ed.) Kvant Selecta: Algebra and Analysis, II, pp. 13–24 (Amer.Math. Soc. Publ., Providence, 1999).

    Google Scholar 

  71. I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications (Elsevier Science, Inc., New York, 2003).

    Google Scholar 

  72. M. P. Mortell, R. E. O’Malley, A. Pokrovskii and V. Sobolev (Eds.), Singular Perturbations and Hysteresis (Society for Industrial and AppliedMath. (SIAM), Philadelphia, 2005).

    Book  MATH  Google Scholar 

  73. F. Murtagh, “Ultrametric model of mind, I: Review,” p-Adic Numbers Ultrametric Anal. Appl. 4, 193–206 (2012).

    Article  MathSciNet  Google Scholar 

  74. F. Murtagh, “Ultrametric model of mind, II: Application to text content analysis,” p-Adic Numbers Ultrametric Anal. Appl. 4, 207–221 (2012).

    Article  MathSciNet  Google Scholar 

  75. F. Murtagh, “The new science of complex systems through ultrametric analysis: Application to search and discovery, to narrative and to thinking,” p-Adic Numbers Ultrametric Anal. Appl. 5 (4), 326–337 (2013).

    Article  Google Scholar 

  76. F. Murtagh, “Mathematical representations of Matte Blanco’s bi-logic, based on metric space and ultrametric or hierarchical topology: towards practical application” Lang. Psychoan. 3 (2), 40–63 (2014).

    Article  Google Scholar 

  77. F. Murtagh, “On ultrametric algorithmic information,” Computer J. 53, 405–416 (2010).

    Article  Google Scholar 

  78. N. P. Ong and P. Monceau, “Anomalous transport properties of a linear-chain metal: NbSe3,” Phys. Rev. B, 16 (8), 3443–3455 (1977).

    Article  Google Scholar 

  79. C. Parenti, F. Strocchi and G. Velo, “A local approach to some non-linear evolution equations of hyperbolic type,” Annali della Scuola Normale Superiore, Classe di Scienze, IV Serie, 3 (3), 443–500 (1976).

    MathSciNet  MATH  Google Scholar 

  80. C. Parenti, F. Strocchi and G. Velo, “Hilbert space sectors for solutions of non-linear relativistic field equations,” Comm. Math. Phys. 53, 65–96 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  81. J. Peterburs,A.M. Nitsch,W. H. R.Miltner and T. Straube, “Impaired representation of time in schizophrenia is linked to positive symptoms and cognitive demand,” PLoS One 8 (6), e67615/1-7 (2013).

    Google Scholar 

  82. J. C. Phillips, Fermat’s last theorem, the Riemann hypothesis, and synergistic glasses, ar**v:condmat/0307301v1[cond-mat.mes-hall], (2003)

    Google Scholar 

  83. B. Pini, Primo Corso di Analisi Matematica (CLUEB Editrice, Bologna, 1972).

    Google Scholar 

  84. F. Piras, F. Piras, V. Ciullo, E. Danese, C. Caltagirone and G. Spalletta, “Time dysperception perspective for acquired brain injury,” Front. Neurol. doi:10.3389/fneur.2013.002174.

  85. I. Prigogine, From Being to Becoming. Time and Complexity in the Physical Sciences (W. H. Freeman & Co., San Francisco, 1980).

    Google Scholar 

  86. I. Prigogine and D. Kondepudi, Termodinamica. Dalle macchine termiche alle strutture dissipative, Bollati Boringhieri editore, Torino, IT, 2002.

    Google Scholar 

  87. R. Prokop, J. Korbel and Z. Prokopová, “Relay feedback autotuning–a polynomial design approach,” A. Bargiela, S.A. Ali, D. Crowley, E.J.H. Kerckhoffs (Eds.), Proceedings of the 24th European Conference on Modelling and Simulation (ECMS 2010) (Kuala Lumpur, Malaysia, June 1-4, 2010), pp. 290–295 (ECMS Press, San Diego, 2010).

    Google Scholar 

  88. J-M. Quinodoz, Reading Freud. A Chronological Exploration of Freud’s Writings (Routledge, New York, 2005).

    Google Scholar 

  89. P. Reale, Psicologia del tempo, Lezioni e seminari (Bollati Boringhieri editore, Torino, 1982).

    Google Scholar 

  90. J. P. Riehl, Mirror-Image Asymmetry. An Introduction to the Origin and Consequences of Chirality (J.Wiley & Sons., Inc., Hoboken, 2010).

    Book  Google Scholar 

  91. C. Rycroft, Dizionario critico di psicoanalisi (Casa Editrice Astrolabio-Ubladini Editore, Roma, 1970).

    Google Scholar 

  92. G. Sasso, La nascita della coscienza (Casa Editrice Astrolabio, Ubaldini Editore, Roma, 2011).

    Google Scholar 

  93. A. Schmitt, A. Hasan, O. Gruber and P. Falkai, “Schizophrenia as a disorder of disconnectivity,” Eur. Arch. Psych. Clin. Neur. 261 (2), S150–S154 (2011).

    Article  Google Scholar 

  94. M. J. Shai Haran, The Mysteries of the Real Prime (Oxford Univ. Press, Inc., New York, 2001).

    MATH  Google Scholar 

  95. M. I. Sloika, V. P. Kravchuk, D. D. Sheka and Y. Gaididei, “Curvature induced chirality symmetry breaking in vortex core switching phenomena,” Appl. Phys. Lett. 104 (25), 252403 (2014).

    Article  Google Scholar 

  96. A. Sossinsky, Nodi. Genesi di una teoria matematica (Bollati Boringhieri, Torino, 2000).

    Google Scholar 

  97. G. Stanghellini, M. Ballerini, S. Presenza, M. Mancini, A. Raballo, S. Blasi and J. Cutting, “Psychopathology of lived time: Abnormal time experience in persons with schizophrenia,” Schizophrenia Bull. doi:10.1093/schbul/sbv052.

  98. M. Stich, C. Blanco and D. Hochberg, “Chiral and chemical oscillations in a simple dimerization model,” PCCP–Phys. Chem. Chem. Phys. 15 (1), 255–261 (2013).

    Article  Google Scholar 

  99. F. Strocchi, Symmetry Breaking, Second Edition (Springer-Verlag, Berlin & Heidelberg, 2008).

    Book  MATH  Google Scholar 

  100. F. Strocchi, E. Zarantonello, E. De Giorgi, G. Dal Maso and L. Modica, Topics in Functional Analysis 1980-81 (Scuola Normale Superiore, Pisa, 1981).

    Google Scholar 

  101. F. Strocchi, Symmetry Breaking in Classical Systems and Nonlinear Functional Analysis (Pubblicazioni della Scuola Normale Superiore (SNS), Pisa, 1999).

    MATH  Google Scholar 

  102. F. Strocchi, “Stability properties of the solutions of the non-linear field equations, Hilbert space sectors and electric charge,” Rendiconti del Seminario Matematico dell’Universitp e del Politecnico di Torino, Special Issue on Non-linear Hyperbolic Equations in Applied Sciences, pp. 231–250 (1989).

    Google Scholar 

  103. E-C. Tan and C-B. Zhu (Eds.), Representation of Real and p-Adic Groups (Singapore Univ. Press and World Sci. Publ. Company, Ltd., Singapore, 2004).

    Book  Google Scholar 

  104. G. Vallortigara and N. Panciera, Cervelli che contano (Adelphi Edizioni, Milano, 2014).

    Google Scholar 

  105. A. C.M. Van Rooij, Non-Archimedean Functional Analysis (Marcell Dekker, Inc., New York, 1978).

    MATH  Google Scholar 

  106. J. VanWezel and P. Littlewood, “Chiral symmetry breaking and charge order,” Physics 3, 87 (2010).

    Article  Google Scholar 

  107. V. S. Varadarajan, “Is space-time p-adic?,” Seminario di Algebra e Geometria (Dipartimento diMatematica dell’Universitp di Bologna, 10 September 2008).

    Google Scholar 

  108. G. B. Vicario, “Il tempo in psicologia,” Le Scienze 30 (347), 43–51 (1997).

    Google Scholar 

  109. G. B. Vicario, Il tempo. Saggio di psicologia sperimentale (Società editrice Il mulino, Bologna, 2005).

    Google Scholar 

  110. A. Visintin, Differential Models of Hysteresis (Springer-Verlag, Berlin & Heidelberg, 1994).

    Book  MATH  Google Scholar 

  111. I. V. Volovich, “p-Adic string,” Class. Quant. Grav. 4, L83–L87 (1987).

    Article  MathSciNet  Google Scholar 

  112. C. Wetterich, “Spontaneous symmetry breaking origins for the difference between time and space,” Phys. Rev. Lett. 94 (1), 011692–011696 (2005).

    Article  MathSciNet  Google Scholar 

  113. G. J. Whitrow, Time in History. Views of Time from Prehistory to the Present Day (Oxford Univ. Press, Oxford, 1988).

    Google Scholar 

  114. E. C. Zeeman, “The topology of the brain and the visual perception. Topology of 3-manifolds and related topics,” (Proc. Univ. of Georgia Institute, 1961).

    Google Scholar 

  115. H. D. Zeh, The Physical Basis of the Direction of Time, 5th Edition (Springer-Verlag, Berlin & Heidelberg, 2007).

    MATH  Google Scholar 

  116. T. R. Zentall, “Animals represent the past and the future,” Evolut. Psych. 11 (3), 573–590 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Iurato.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iurato, G., Khrennikov, A. & Murtagh, F. Formal foundations for the origins of human consciousness. P-Adic Num Ultrametr Anal Appl 8, 249–279 (2016). https://doi.org/10.1134/S2070046616040014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046616040014

Key words

Navigation