Log in

Green Tides: New Consequences of the Eutrophication of Natural Waters (Invited Review)

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

In recent decades, alongside the comparatively well-studied bloom caused by phytoplankton, a bloom of marine and fresh waters caused by littoral benthic macroalgae of three genera—Ulva, Cladophora, and Spirogyra—have become a global phenomenon. In the present review, an attempt is made to gain an understanding of why it is these taxa of green filamentous algae that start to grow rapidly in the spring in many water bodies and streams, including oligotrophic waters, and then float up from the bottom, forming floating mats (metaphyton); then their decaying masses are washed ashore and cause substantial ecological and economical losses. Peculiar and common ecological and physiological features of Ulva, Cladophora, and Spirogyra favorable for the formation of green tides are considered. Although eutrophication (the supply of nitrogen and phosphorus from agricultural lands, industrial and domestic wastewaters, and aquaculture) is the evident cause of the increase in algal biomass, it is suggested that the location of external fluxes of inorganic nutrients (surface runoff or groundwater discharge), as well as the biogenic redirection of internal fluxes of nitrogen and phosphorus from pelagial to littoral (benthification), play a key role in the formation of green tides. Measures for controlling green tides are discussed. The necessity for detailed studies of the metaphytonic form of vegetation of benthic macroalgae is emphasized. Obviously, a revision of the present concept of oligotrophic/eutrophic waters which considers only the pelagic compartments of aquatic ecosystems is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed, R.M.M., Al Kindi, S., Schramm, A., and Barry, M.J., Short-term effects of flooding on bacterial community structure and nitrogenase activity in microbial mats from a desert stream, Aquat. Microb. Ecol., 2011, vol. 63, pp. 245–254.

    Article  Google Scholar 

  • Adams, M.S. and Stone, W., Field studies on photosynthesis of Cladophora glomerata (Chlorophyta) in Green bay, Lake Michigan, Ecology, 1973, vol. 54, pp. 853–862.

    Article  Google Scholar 

  • Agrawal, S.B. and Ciiaudhary, B.R., Effect of certain environmental factors on zygospore germination of Spirogyra hyaline, Folia Microbiol., 1994, vol. 39, pp. 291–295.

    Article  CAS  Google Scholar 

  • Agrawal, S.B. and Singh, V., Viability of dried filaments, survivability and reproduction under water stress, and survivability following heat and UV exposure in Lyngbya martensiana, Oscillatoria agardhii, Nostoc calcicola, Hormidium fluitans, Spirogyra sp. and Vaucheria geminate, Folia Microbiol., 2002, vol. 47, pp. 61–67.

    Article  CAS  Google Scholar 

  • Arora, M. and Sahoo, D., Green algae, in The Algae World, Sahoo, D. and Seckbach, J., Eds., Dordrecht: Springer-Verlag, 2015, pp. 91–120.

    Chapter  Google Scholar 

  • Auer, M.T. and Canale, R.P., Ecological and mathematical modeling of Cladophora in Lake Huron: 3. The dependence of growth rates on internal phosphorus pool size, J. Great Lakes Res., 1982, vol. 8, pp. 93–99.

    Article  CAS  Google Scholar 

  • Back, S., Lehvo, A., and Blomster, J., Mass occurrence of the unattached Enteromorpha interstinalis on the Finnish Baltic coast, Ann. Bot. Fenn., 2000, vol. 37, pp. 155–161.

    Google Scholar 

  • Berezina, N.A., Gubelit, Yu.I., Polyak, Yu.M., Sharov, A.N., Kudryavtseva, V.A., Lubimtsev, V.A., Petukhov, V.A., and Shigaeva, T.D., An integrated approach to the assessment of the eastern Gulf of Finland health: A case study of coastal habitats, J. Mar. Syst., 2017, vol. 171, pp. 159–171 doi: https://doi.org/10.1016/j.jmarsys.2016.08.013

    Article  Google Scholar 

  • Berger, R., Henriksson, E., Kautsky, L., and Malm, T., Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea, Aquat. Ecol., 2003, vol. 37, pp. 1–11.

    Article  Google Scholar 

  • Berry, H.A. and Lembi, C.A., Effects of temperature and irradiance on the seasonal variation of a Spirogyra (Chlorophyta) population in a midwestern lake (U.S.A.), J. Phycol., 2000, vol. 36, pp. 841–851.

    Article  Google Scholar 

  • Bhat, N.A., Wanganeo, A., and Raina, R., Seasonal dynamics of phytoplankton community in a tropical wetland, Environ. Monit. Assess., 2015, vol. 187, p. 4136.

    Article  CAS  PubMed  Google Scholar 

  • Biggs, B.J.F., Goring, D.G., and Nikora, V.I., Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form, J. Phycol., 1998, vol. 34, pp. 598–607.

    Article  Google Scholar 

  • Bormans, M., Marsalek, B., and Jancula, D., Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review, Aquat. Ecol., 2016, vol. 50, pp. 407–422.

    Article  CAS  Google Scholar 

  • Brookes, J.D. and Carey, C.C., Resilience to blooms, Science, 2011, vol. 334, pp. 46–47.

    Article  CAS  PubMed  Google Scholar 

  • Boughey, A.S. Ecology of Populations, New York: Macmillan, 1968.

    Google Scholar 

  • Byappanahalli, M.N., Shively, D.A., Nevers, M.B., Sadowsky, M.J., and Whitman, R.L., Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta), FEMS Microbiol. Ecol., 2003, vol. 46, pp. 203–211.

    Article  CAS  PubMed  Google Scholar 

  • Byappanahalli, M.N., Sawdey, R., Ishii, S., Shively, D.A., Ferguson, J., Whitman, R.L., and Sadowsky, M.J., Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds, Water Res., 2009, vol. 43, pp. 806–814.

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo, A., Hudon, C., Vis, C., and Gagnon, P., Hydrological control of filamentous green algae in a large fluvial lake (Lake Saint-Pierre, St. Lawrence River, Canada), J. Great Lakes Res., 2013, vol. 39, pp. 409–419.

    Article  Google Scholar 

  • Chambouvet, A., Morin, P., Marie, D., and Guillou, L., Control of toxic marine dinoflagellate blooms by serial parasitic killers, Science, 2008, vol. 322, pp. 1254–1257.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y.H., Kub, C.R., and Lu, H.L., Effects of aquatic ecological indicators of sustainable green energy landscape facilities, Ecol. Eng., 2014, vol. 71, pp. 144–153.

    Article  Google Scholar 

  • Chavez-Sanchez, T., Pinon-Gimate, A., Serviere-Zaragoza, E., Lopez-Bautista, J.M., and Casas-Valdez, M., Ulva blooms in the southwestern Gulf of California: Reproduction and biomass, Estuarine, Coastal Shelf Sci., 2018, vol. 200, pp. 202–211.

    Article  Google Scholar 

  • Choo, K., Snoeijs, P., and Pedersen, M., Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana, J. Exp. Mar. Biol. Ecol., 2004, vol. 298, pp. 111–123.

    Article  CAS  Google Scholar 

  • Cohen, R.A. and Fong, P., Using opportunistic green macroalgae as indicators of nitrogen supply and sources to estuaries, Ecol. Appl., 2006, vol. 16, pp. 1405–1420.

    Article  PubMed  Google Scholar 

  • Cuhel, R.L. and Aguilar, C., Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders, Annu. Rev. Mar. Sci., 2013, vol. 5, pp. 289–320.

    Article  Google Scholar 

  • Dodds, W.K. and Gudder, D.A., Ecology of Cladophora, J. Phycol., 1992, vol. 28, pp. 415–427.

    Article  Google Scholar 

  • Dong, B.C., Liu, R.H., and Yu, F.H., Effects of Spirogyra arcta on biomass and structure of submerged macrophyte communities, Plant Species Biol., 2015, vol. 30, pp. 28–36.

    Article  Google Scholar 

  • Entwisle, T.J., Phenology of Cladophora—Stigeoclonium community in two urban creeks of Melbourne, Aust. J. Mar. Freshwater Res., 1989, vol. 40, pp. 471–489.

    Article  CAS  Google Scholar 

  • Filipkowska, A., Lubecki, L., Szymczak-Żyła, M., Kowalewska, G., Żbikowski, R., and Szefer, P., Utilization of macroalgae from the Sopot beach (Baltic Sea), Oceanologia, 2008, vol. 50, pp. 255–273.

    Google Scholar 

  • Flores-Moya, A., Costas, E., Bañares-España, E., García-Villada, L., Altamirano, M., and López-Rodaset, V., Adaptation of Spirogyra insignis (Chlorophyta) to an extreme natural environment (sulphurous waters) through preselective mutations, New Phytol., 2005, vol. 166, pp. 655–661.

    Article  PubMed  Google Scholar 

  • Freeman, M.C., The role of nitrogen and phosphorus in the development of Cladophora glomerata (L.) Kützing in the Manawatu River, New Zealand, Hydrobiologia, 1986, vol. 131, pp. 23–30.

    Article  CAS  Google Scholar 

  • Frossard, V., Versanne-Janodet, S., and Aleya, L., Factors supporting harmful macroalgal blooms in flowing waters: A 2-year study in the Lower Ain River, France, Harmful Algae, 2014, vol. 33, pp. 19–28.

    Article  Google Scholar 

  • Gao, G., Clarea, A.S., Rose, C., and Caldwell, G.S., Intrinsic and extrinsic control of reproduction in the green tide-forming alga, Ulva rigida, Environ. Exp. Bot., 2017, vol. 139, pp. 14–22.

    Article  CAS  Google Scholar 

  • Ge, C., Yu, X., Kan, M., and Qu, C., Adaptation of Ulva pertusa to multiple-contamination of heavy metals and nutrients: Biological mechanism of outbreak of Ulva sp. green tide, Mar. Pollut. Bull., 2017, vol. 125, pp. 250–253.

    Article  CAS  PubMed  Google Scholar 

  • Ge, S., Madill, M., and Champagne, P., Use of freshwater macroalgae Spirogyra sp. for the treatment of municipal wastewaters and biomass production for biofuel applications, Biomass Bioenergy, 2018, vol. 111, pp. 213–223.

    Article  CAS  Google Scholar 

  • Gelwick, F.P. and Matthews, W.J., Effects of algivorous minnows (Campostoma) on spatial and temporal heterogeneity of stream periphyton, Oecologia, 1997, vol. 112, pp. 386–392.

    Article  CAS  PubMed  Google Scholar 

  • Golubkov, S.M., Berezina, N.A., Gubelit, Yu.I., Demchuk, A.S., Golubkov, M.S., and Tiunov, A.V., A relative contribution of carbon from green tide algae Cladophora glomerata and Ulva intestinalis in the coastal food webs in the Neva Estuary (Baltic Sea), Mar. Pollut. Bull., 2018, vol. 126, pp. 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Gorain, P.C., Sengupta, S., Satpati, G.G., Paul, I., Tripathi, S., and Pal, R., Carbon sequestration in macroalgal mats of brackish-water habitats in Indian Sunderbans: potential as renewable organic resource, Sci. Total Environ., 2018, vol. 626, pp. 689–702.

    Article  CAS  PubMed  Google Scholar 

  • Graham, J.M., Auer, M.T., Canale, R.P., and Hoffmann, J.P., Ecological studies and mathematical modeling of Cladophora in Lake Huron. 4. Photosynthesis and respiration as functions of light and temperature, J. Great Lakes Res., 1982, vol. 8, pp. 100–111.

    Article  CAS  Google Scholar 

  • Gubelit, Yu.I. and Kovalchuk, N.A., Macroalgal blooms and species diversity in the Transition Zone of the eastern Gulf of Finland, Hydrobiologia, 2010, vol. 656, no. 1, pp. 83–86.

    Article  Google Scholar 

  • Gubelit, Y.I., Makhutova, O.N., Sushchik, N.N., Kolmakova, A.A., Kalachova, G.S., and Gladyshev, M.I., Fatty acid and elemental composition of littoral “green tide” algae from the Gulf of Finland, the Baltic Sea, J. Appl. Phycol., 2015, vol. 27, pp. 375–386.

    Article  CAS  Google Scholar 

  • Gubelit, Yu., Polyak, Yu., Dembska, G., Pazikowska-Sapota, G., Zegarowski, L., Kochura, D., Krivorotov, D., Podgornaya, E., Burova, O., and Maazouzi, Ch., Nutrient and metal pollution of the eastern Gulf of Finland coastline: sediments, macroalgae, microbiota, Sci. Total Environ., 2016, vol. 550, pp. 806–819. doi: https://doi.org/10.1016/j.scitotenv.2016.01.122

    Article  CAS  PubMed  Google Scholar 

  • Gubelit, Yu.I. and Vainshtein, M.B., Growth of Enterobacteria on algal mats in the eastern part of the Gulf of Finland, Inland Water Biol., 2011, vol. 4, no. 2, pp. 132–136.

    Article  Google Scholar 

  • Gulati, R.D., Dionisio Pires, L.M., and van Donk, E., Lake restoration studies: failures, bottlenecks, and prospects of new ecotechnological measures, Limnologica, 2008, vol. 38, pp. 233–247.

    Article  CAS  Google Scholar 

  • Hainz, R., Wober, C., and Schagerl, M., The relationship between Spirogyra (Zygnematophyceae, Streptophyta) filament type groups and environmental conditions in Central Europe, Aquat. Bot., 2009, vol. 91, pp. 173–180.

    Article  Google Scholar 

  • Han, H., Chen, Y., Jørgensen, S.E., Nielsen, S.N., and Hu, W., A system-dynamic model on the competitive growth between Potamogeton malaianus Miq. and Spirogyra sp., Ecol. Model., 2009, vol. 220, pp. 2206–2217.

    Article  CAS  Google Scholar 

  • Harris, V.A., Cladophora confounds coastal communities—public perceptions and management dilemmas, Proc. Workshop “Cladophora Research and Management in the Great Lakes,” Boostma, H., Jenson, E., Young, E., and Berges, J., Eds., Milwaukee, WI: Univ. of Wisconsin-Milwaukee, 2005, no. 2005-01.

    Google Scholar 

  • Havens, K.E., East, T.L., Hwang, S.J., Rodusky, A.J., Sharfstein, B., and Steinman, A.D., Algal responses to experimental nutrient addition in the littoral community of a subtropical lake, Freshwater Biol., 1999, vol. 42, pp. 329–344.

    Article  CAS  Google Scholar 

  • Hawes, I., The seasonal dynamics of Spirogyra in a shallow, maritime Antarctic lake, Polar Biol., 1988, vol. 8, pp. 429–437.

    Article  Google Scholar 

  • Higgins, S.N., Modeling the growth dynamics of Cladophora in eastern Lake Erie, PhD Thesis Waterloo: Univ. of Waterloo, 2005.

    Google Scholar 

  • Higgins, S.N., Hecky, R.E., and Guildford, S.J., The collapse of benthic macroalgal blooms in response to self—shading, Freshwater Biol., 2008a, vol. 53, pp. 2557–2572.

    Article  Google Scholar 

  • Higgins, S.N., Malkin, S.Y., Howell, E.T., Guildford, S.J., Campbell, L., Hiriart-Baer, V., and Hecky R.E., An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes, J. Phycol., 2008b, vol. 44, pp. 839–854.

    Article  PubMed  Google Scholar 

  • Hoffmann, J.P. and Graham, L.E., Effects of selected physiochemical factors on growth and zoosporogenesis of Cladophora glomerata (Chlorophyta), J. Phycol., 1984, vol. 20, pp. 1–7.

    Article  Google Scholar 

  • Hofmann, L.C., Nettleton, J.C., Neefus, C.D., and Mathieson, A.C., Cryptic diversity of Ulva (Ulvales, Chlorophyta) in the Great Bay estuarine system (Atlantic USA): introduced and indigenous distromatic species, Eur. J. Phycol., 2010, vol. 45, no. 3, pp. 230–239.

    Article  Google Scholar 

  • Hondzo, M. and Wang, H., Effects of turbulence on growth and metabolism of periphyton in a laboratory flume, Water Resour. Res., 2002, vol. 38, no. 12, p. 1277. doi: https://doi.org/10.1029/2002WR001409

    Article  Google Scholar 

  • Hupfer, M. and Lewandowski, J., Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology, Int. Rev. Hydrobiol., 2008, vol. 93, pp. 415–432.

    Article  CAS  Google Scholar 

  • Ibelings, B.W., Bormans, M., Fastner, J., and Visser, P.M., CYANOCOST special issue on cyanobacterial blooms: synopsis—a critical review of the management options for their prevention, control and mitigation, Aquat. Ecol., 2016, vol. 50, pp. 595–605.

    Article  CAS  Google Scholar 

  • Ikegaya, H., Nakase, T., Iwata, K., Tsuchida, H., Sonobe, S., and Shimmen, T., Studies on conjugation of Spirogyra using monoclonal culture, J. Plant Res., 2012, vol. 125, pp. 457–464.

    Article  PubMed  Google Scholar 

  • Ishida, N., Mitamura, O., and Nakayama, M., Seasonal variation in biomass and photosynthetic activity of epilithic algae on a rock at the upper littoral area in the north basin of Lake Biwa, Japan, Limnology, 2006, vol. 7, pp. 175–183.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Sondergaard, M., Krovang, B., Jensen, J.P., Svendsen, L.M., and Lauridsen, T.L., Lake and catchment management in Denmark, Hydrobiologia, 1999, vols. 395–396, pp. 419–432.

    Article  Google Scholar 

  • Johnson, R., The benthic food web on nearshore hard substrates at Peacock Point, eastern Lake Erie, MSc Thesis, Waterloo: Univ. of Waterloo, 2004.

    Google Scholar 

  • Klemencic, A.K. and Toman, M.J., Influence of environmental variables on benthic algal associations from selected extreme environments in Slovenia in relation to the species identification, Period. Biol., 2010, vol. 112, pp. 179–191.

    Google Scholar 

  • Komulaynen, S.F., Green algae as a structural element of phytoperiphyton communities in streams of NW Russia, Biologia, 2008, vol. 63, pp. 859–865.

    Article  Google Scholar 

  • Kraufvelin, P. and Salovius, S., Animal diversity in Baltic rocky shore macroalgae: can Cladophora glomerata compensate for lost Fucus vesiculosus? Estuarine, Coastal Shelf Sci., 2004, vol. 61, pp. 369–378.

    Article  Google Scholar 

  • Kravtsova, L.S., Izhboldina, L.A., Khanaev, I.V., Pomazkina, G.V., Rodionova, E.V., Domysheva, V.M., Sakirko, M.V., Tomberg, I.V., Kostornova, T.Y., Kravchenko, O.S., and Kupchinsky, A.B., Nearshore benthic blooms of filamentous green algae in Lake Baikal, J. Great Lakes Res., 2014, vol. 40, pp. 441–448.

    Article  Google Scholar 

  • Krupek, R.A., Empinotti, A., Santos, R.K., and Araujo, E.A.T., Influence of physical characteristics of environment (light and current velocity) on the substrate occupation by Spirogyra sp. in stream ecosystems, Braz. J. Bot., 2014, vol. 37, pp. 453–459.

    Article  Google Scholar 

  • Kumar, J., Dhar, P., Tayade, A. B, Gupta, D., Chaurasia, O.P., Upreti, D.K., Toppo, K., Arora, R., Suseela, M.R., and Srivastava, R.B., Chemical composition and biological activities of trans-Himalayan alga Spirogyra porticalis (Muell.) Cleve, PLoSOne, 2015, vol. 10, no. 2, p. e0118255. doi: https://doi.org/10.1371/journal.pone.0118255

    Article  CAS  Google Scholar 

  • Kwon, H.K., Kang, H., Oh, Y.H., Park, S.R., and Kim, G., Green tide development associated with submarine groundwater discharge in a coastal harbor, Jeju, Korea, Sci. Rep., 2017, vol. 7, pp. 6325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen, A. and Sand-Jensen, K., Salt tolerance and distribution of estuarine benthic macroalgae in the Kattegat—Baltic Sea area, Phycologia, 2006, vol. 45, pp. 13–23.

    Article  Google Scholar 

  • Lee, J.W. and Kim, G.H., Two-track control of cellular machinery for photomovement in Spirogyra varians (Streptophyta, Zygnematales), Plant Cell Physiol., 2017, vol. 58, pp. 1812–1822.

    Article  CAS  PubMed  Google Scholar 

  • Lehvo, A. and Bäck, S., Survey of macroalgal mats in the Gulf of Finland, Baltic Sea, Aquat. Conserv., 2001, vol. 11, pp. 11–18.

    Article  Google Scholar 

  • Lenzi, M., What can be done about massive macroalgal blooms? J. Aquacult. Res. Dev., 2014, vol. 5, no. 8, p. 1000292.

    Google Scholar 

  • Li, H., Zhang, Y., Tang, H., Shi, X., Rivkin, R.B., and Legendre, L., Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea, Harmful Algae, 2017, vol. 63, pp. 164–172.

    Article  CAS  PubMed  Google Scholar 

  • Liess, A. and Kahlert, M., Gastropod grazers and nutrients, but not light, interact in determining periphytic algal diversity, Oecologia, 2007, vol. 152, pp. 101–111.

    Article  PubMed  Google Scholar 

  • Liu, D., Keesing, J.K., **ng, Q., and Shi, P., World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China, Mar. Pollut. Bull., 2009, vol. 58, pp. 888–895.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Su, N., Wang, X., and Du, J., Submarine ground-water discharge and associated nutrient fluxes into the Southern Yellow Sea: A case study for semi-enclosed and oligotrophic seas-implication for green tide bloom, J. Geophys. Res.: Oceans, 2017, vol. 122, pp. 139–152.

    Article  Google Scholar 

  • Liu, R.H., Dong, B.C., Li, H.L., Zhang, Q., and Yu, F.H., Patchy distributions of Spirogyra arcta do not affect growth of the submerged macrophyte Ceratophyllum demersum, Plant Species Biol., 2012, vol. 27, pp. 210–217.

    Article  Google Scholar 

  • Lurling, M., Mackay, E., Reitzel, K., and Spears, B.M., Editorial—a critical perspective on geo-engineering for eutrophication management in lakes, Water Res., 2016, vol. 97, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Mackay, E.B., Maberly, S.C., Pan, G., Reitzel, K., Bruere, A., Corker, N., Douglas, G., Egemose, S., Hamilton, D., Hatton-Ellis, T., Huser, B., Li, W., Meis, S., Moss, B., Lürling, M., et al., Geoengineering in lakes: welcome attraction or fatal distraction? Inland Waters, 2014, vol. 4, pp. 349–356.

    Article  Google Scholar 

  • Mantai, K.E., Some aspects of photosynthesis in Cladophora glomerata, J. Phycol., 1974, vol. 10, pp. 288–291.

    Google Scholar 

  • Martem’yanov, V.I. and Mavrin, A.S., Threshold environmental concentrations of cations determining the boundaries of survival of the filamentous alga Spirogyra sp. in freshwater reservoirs, Contemp. Probl. Ecol., 2012, vol. 5, no. 3, pp. 250–254.

    Article  Google Scholar 

  • Martins, I., Pardal, M.A., Lilleboa, A.I., Flindt, M.R., and Marques, J.C., Hydrodynamics as a major factor controlling the occurrence of green macroalgal blooms in a eutrophic estuary: A case study on the influence of precipitation and river management, Estuarine, Coastal Shelf Sci., 2001, vol. 52, pp. 165–177.

    Article  CAS  Google Scholar 

  • McCormick, P.V., Shuford, R.B.E. III, Backus, J.G., and Kennedy, W.C., Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A., Hydrobiologia, 1998, vol. 362, pp. 185–208.

    Article  Google Scholar 

  • McCrackin, M.L., Jones, H.P., Jones, P.C., and Moreno-Mateos, D., Recovery of lakes and coastal marine ecosystems from eutrophication: a global meta-analysis, Limnol. Oceanogr., 2017, vol. 62, pp. 507–518.

    Article  CAS  Google Scholar 

  • Migliore, G., Alisi, C., Sprocati, A.R., Massi, E., Ciccoli, R., Lenzi, M., Wang, A., and Cremisini, C., Anaerobic digestion of macroalgal biomass and sediments sourced from the Orbetello Lagoon, Italy, Biomass Bioenergy, 2012, vol. 42, pp. 69–77.

    Article  CAS  Google Scholar 

  • Mihranyan, A., Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials, J. Appl. Polym. Sci., 2011, vol. 119, pp. 2449–2460.

    Article  CAS  Google Scholar 

  • Mills, E.L., Casselman, J.M., Dermott, R., Fitzsimons, J.D., Gal, G., Holeck, K.T., Hoyle, J.A., Johannsson, O.E., Lantry, B.F., Makarewicz, J.., Millard, E.S., Munawar, I.F., Munawar, M., O’Gorman, R., Owens, R.W., et al., Lake Ontario: food web dynamics in a changing ecosystem (1970–2000), Can. J. Fish. Aquat. Sci., 2003, vol. 60, pp. 471–490.

    Article  Google Scholar 

  • Mohamed, Z.A., Allelopathic activity of Spirogyra sp.: stimulating blooming formation and toxin production by Oscillatoria agardhii in some irrigation canals, Egypt, J. Plankton Res., 2002, vol. 24, pp. 137–141.

    Article  CAS  Google Scholar 

  • Morand, P. and Merceron, M., Macroalgal population and sustainability, J. Coastal Res., 2005, vol. 21, pp. 1009–1020.

    Article  Google Scholar 

  • Munir, N., Imtiaz, A., Sharif, N., and Naz, S., Optimization of growth conditions of different algal strains and determination of their lipid contents, J. Anim. Plant Sci., 2015, vol. 25, pp. 546–553.

    CAS  Google Scholar 

  • Nelson, T.A. and Gregg, B.C., Determination of EC50 for normal oyster larval development in extracts from bloom forming green seaweeds, Nautilus, 2013, vol. 127, pp. 156–159.

    Google Scholar 

  • Nelson, T.A., Lee, D.J., and Smith, B.C., Are “green tides” harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrate and Ulvaria obscura (Ulvophyceae), J. Phycol., 2003, vol. 39, pp. 874–879.

    Article  CAS  Google Scholar 

  • Nelson, T.A. Haberlin, K., Nelson, A.V., Ribarich, H., Hotchkiss, R., van Alstyne, K.L., Buckingham, L., Simunds, D.J., and Fredrickson, K., Ecological and physiological controls of species composition in green macroalgal blooms, Ecology, 2008, vol. 89, pp. 1287–1298.

    Article  PubMed  Google Scholar 

  • Nozaki, K., Abrupt change in primary productivity in a littoral zone of Lake Biwa with the development of a filamentous green-algal community, Freshwater Biol., 2001, vol. 46, pp. 587–602.

    Article  CAS  Google Scholar 

  • Nozaki, K., Darijav, K., Akatsuka, T., Goto, N., and Mitamura, O., Development of filamentous green algae in the benthic algal community in a littoral sand-beach zone of Lake Biwa, Limnology, 2003, vol. 4, pp. 161–165.

    Article  CAS  Google Scholar 

  • Orihel, D.M., Baulch, H.M., Casson, N.J., North, R.L., Parsons, C.T., Seckar, D.C.M., and Venkiteswaran, J.J., Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis, Can. J. Fish. Aquat. Sci., 2017, vol. 74, pp. 2005–2029.

    Article  CAS  Google Scholar 

  • Orlova, M.I., Anokhina, L.E., Panov, V.E., Nekrasov, A.V., and Klimentenok, S.N., Preliminary environmental state assessment for littoral zone in resort district of St. Petersburg, Res. Bull. Baltic Floating Univ., 1999, vol. 3, pp. 37–42.

    Google Scholar 

  • Paerl, H.W., Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs, J. Plankton Res., 2017, vol. 39, pp. 763–771.

    Article  Google Scholar 

  • Paerl, H.W., Fulton, R.S. III, Moisander, P.H., and Dyble, J., Harmful freshwater algal blooms, with emphasis on cyanobacteria, Sci. World J., 2001, vol. 1, pp. 76–113.

    Article  CAS  Google Scholar 

  • Park, S.R., Kang, Y.H., and Choi, C.G., Biofilm: a crucial factor affecting the settlement of seaweed on intertidal rocky surfaces, Estuarine, Coastal Shelf Sci., 2011, vol. 91, p. 163e167.

    Article  Google Scholar 

  • Peckol, P. and Putnam, A.B., Differential toxic effects of Ulva lactuca (Chlorophyta) on the herbivorous gastropods, Littorina littorea and L. obtusata (Mollusca), J. Phycol., 2017, vol. 53, pp. 361–367.

    Article  PubMed  Google Scholar 

  • Perrot, T., Rossi, N., Ménesguen, A., and Dumas, F., Modeling green macroalgal blooms on the coasts of Brittany, France to enhance water quality management, J. Mar. Syst., 2014, vol. 132, pp. 38–53.

    Article  Google Scholar 

  • Philips, G., Bramwell, A., Pitt, J., Stansfield, J., and Perrow, M., Practical application of 25 years’ research into the management of shallow lakes, Hydrobiologia, 1999, vols. 395–396, pp. 61–76.

    Article  Google Scholar 

  • Pillsbury, R.W., Lowe, R.L., Pan, Y.D., and Greenwood, J.L., Changes in the benthic algal community and nutrient limitation in Saginaw Bay, Lake Huron, during the invasion of the zebra mussel (Dreissena polymorpha), J. N. Am. Benthol. Soc., 2002, vol. 21, pp. 238–252.

    Article  Google Scholar 

  • Polyak, Y., Shigaeva, T., Gubelit, Y., Bakina, L., Kudryavtseva, V., and Polyak, M., Sediment microbial activity and its relation to environmental variables along the eastern Gulf of Finland coastline, J. Mar. Syst., 2017, vol. 171, pp. 101–110.

    Article  Google Scholar 

  • Power, M., Lowe, R., Furey, P., Welter, J., Limm, M., Finlay, J., Bode, C., Chang, S., Goodrich, M., and Sculley, J., Algal mats and insect emergence in rivers under Mediterranean climates: towards photogrammetric surveillance, Freshwater Biol., 2009, vol. 54, pp. 2101–2115.

    Article  CAS  Google Scholar 

  • Rai, U.N., Dubey, S., Shukla, O.P., Dwivedi, S., and Tripathi, R.D., Screening and identification of early warning algal species for metal contamination in fresh water bodies polluted from point and non-point sources, Environ. Monit. Assess., 2008, vol. 144, pp. 469–481.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, P.K. and Hawkes, H.A., Studies on the growth of Cladophora glomerata in laboratory continuous-flow culture, Br. Phycol. J., 1986, vol. 21, pp. 437–444.

    Article  Google Scholar 

  • Ross, S., Sheath, R., and Muller, K., Molecular phylogeography and species discrimination of freshwater Cladophora (Cladophorales, Chlorophyta) in North America, Proc. Workshop “Cladophora Research and Management in the Great Lakes,” Boostma, H., Jenson, E., Young, E., and Berges, J., Eds., Milwaukee, WI: Univ. of Wisconsin-Milwaukee, 2005, no. 2005-01.

    Google Scholar 

  • Ruangchuay, R., Dahamat, S., Chirapat, A., and Notoya, M., Effects of culture conditions on the growth and reproduction of Gut weed, Ulva intestinalis Linnaeus (Ulvales, Chlorophyta), Songklankarin J. Sci. Technol., 2012, vol. 34, pp. 501–507.

    Google Scholar 

  • Selala, C., Botha, A.-M., de Klerk, L.P., de Klerk, A.R., Myburgh, J.G., and Oberholster, P.J., Using phytoplankton diversity to determine wetland resilience, one year after a vegetable oil spill, Water, Air Soil Pollut., 2014, vol. 225, p. 2051.

    Article  CAS  Google Scholar 

  • Singh, S.P. and Singh, P., Effect of temperature and light on the growth of algae species: a review, Renewable Sustainable Energy Rev., 2015, vol. 50, pp. 431–444.

    Article  CAS  Google Scholar 

  • Smetacek, V. and Zingone, A., Green and golden seaweed tides on the rise, Nature, 2013, vol. 504, pp. 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Sushchik, N.N., Gladyshev, M.I., Ivanova, E.A., and Kravchuk, E.S., Seasonal distribution and fatty acid composition of littoral microalgae in the Yenisei River, J. Appl. Phycol., 2010, vol. 22, pp. 11–24.

    Article  CAS  Google Scholar 

  • Townsend, S.A., Schult, J.H., Douglas, M.M., and Skinner, S., Does the Redfield ratio infer nutrient limitation in the macroalga Spirogyra fluviatilis? Freshwater Biol., 2008, vol. 53, pp. 509–520.

    Article  CAS  Google Scholar 

  • Townsend, S.A., Garcia, E.A., and Douglas, M.M., The response of benthic algal biomass to nutrient addition over a range of current speeds in an oligotrophic river, Freshwater Sci., 2012, vol. 31, pp. 1233–1243.

    Article  Google Scholar 

  • Townsend, S., Schult, J., Douglas, M., and Lautenschlager, A., Recovery of benthic primary producers from flood disturbance and its implications for an altered flow regime in a tropical savannah river (Australia), Aquat. Bot., 2017, vol. 136, pp. 9–20.

    Article  Google Scholar 

  • Trochine, C., Guerrieri, M., Liboriussen, L., Meerhoff, M., Lauridsen, T.L., Sondergaard, M., and Jeppesen, E., Filamentous green algae inhibit phytoplankton with enhanced effects when lakes get warmer, Freshwater Biol., 2011, vol. 56, pp. 541–553.

    Article  Google Scholar 

  • Thybo-Christesen, M., Rasmussen, M.B., and Blackburn, T.H., Nutrient fluxes and growth of Cladophora sericea in a shallow Danish bay, Mar. Ecol.: Prog. Ser., 1993, vol. 100, pp. 273–281.

    Article  Google Scholar 

  • Triest, L., Stiers, I., and van Onsem, S., Biomanipulation as a nature-based solution to reduce cyanobacterial blooms, Aquat. Ecol., 2016, vol. 50, pp. 461–483.

    Article  CAS  Google Scholar 

  • Valiela, I., McClelland, J., Hauxwell, J., Behr, P.J., Hersh, D., and Foreman, K., Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences, Limnol. Oceanogr., 1997, vol. 42, pp. 1105–1118.

    Article  Google Scholar 

  • van den Hoek, C. Revision of the European Species of Cladophora, Leiden: E.J. Brill, 1963.

    Google Scholar 

  • Vogel, V. and Bergmann, P., Culture of Spirogyra sp. in a flat-panel airlift photobioreactor, 3 Biotech., 2018, vol. 8, p. 6.

    Article  PubMed  Google Scholar 

  • Wallentinus, I., Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies, Mar. Biol., 1984, vol. 80, pp. 215–225.

    Article  CAS  Google Scholar 

  • Wan, A.H.L., Wilkes, R.J., Heesch, S., Bermejo, R., Johnson, M.P., and Morrison, L., Assessment and characterization of Ireland’s green tides (Ulva species), PLoS One, 2017, vol. 12, no. 1, p. e0169049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., **ao, J., Fan, S., Li, Y., Liu, X., and Liu, D., Who made the world’s largest green tide in China? An integrated study on the initiation and early development of the green tide in Yellow Sea, Limnol. Oceanogr., 2015, vol. 60, pp. 1105–1117.

    Article  Google Scholar 

  • Whitman, R.L., Shively, D.A., Pawlik, H., Nevers, M.B., and Byappanahalli, M.N., Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan, Appl. Environ. Microbiol., 2003, vol. 69, pp. 4714–4719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitton, B.A., The biology of Cladophora in freshwaters, Water Res., 1970, vol. 4, pp. 457–476.

    Article  Google Scholar 

  • Wu, H., Zhang, J., Yarish, C., He, P., and Kim, J.K., Bioremediation and nutrient migration during blooms of Ulva in the Yellow Sea, China, Phycologia, 2018, vol. 57, pp. 223–231.

    Article  CAS  Google Scholar 

  • Ye, N., Zhang, X., Mao, Y., Liang, C., Xu, D., Zou, J., Zhuang, Z., and Wang, Q., ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example, Ecol. Res., 2011, vol. 26, pp. 477–485.

    Article  Google Scholar 

  • Yoshida, K. and Shimmen, T., Involvement of actin filaments in rhizoid morphogenesis of Spirogyra, Physiol. Plant, 2009, vol. 135, pp. 98–107.

    Article  CAS  PubMed  Google Scholar 

  • Zebek, E., Seasonal dynamics of phytoplankton with relation to physicochemical water parameters above and below the hydroelectric plant on the Pasleka River (North-East Poland), Water Resour., 2014, vol. 41, pp. 583–591.

    Article  CAS  Google Scholar 

  • Zhang, H., Chen, R., Li, F., and Chen, L., Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures, Chin. J. Oceanol. Limnol., 2015, vol. 33, pp. 430–438.

    Article  CAS  Google Scholar 

  • Zhang, X., Xu, D., Mao, Y., Li, Y., Xue, S., Zou, J., Lian, W., Liang, C., Zhuang, Z., Wang, Q., and Ye, N., Settlement of vegetative fragments of Ulva prolifera confirmed as an important seed source for succession of a large-scale green tide bloom, Limnol. Oceanogr., 2011, vol. 56, pp. 233–242.

    Article  Google Scholar 

  • Zhu, B., Fitzgerald, D.G., Mayer, C.M., Rudstam, L.G., and Mills, E.L., Alteration of ecosystem function by zebra mussels in Oneida Lake: impacts on submerged macrophytes, Ecosystems, 2006, vol. 9, pp. 1017–1028.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Gladyshev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladyshev, M.I., Gubelit, Y.I. Green Tides: New Consequences of the Eutrophication of Natural Waters (Invited Review). Contemp. Probl. Ecol. 12, 109–125 (2019). https://doi.org/10.1134/S1995425519020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425519020057

Keywords

Navigation