Log in

Numerical Simulation of Wave Propagation in 3D Elastic Media with Viscoelastic Formations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Attenuation is widespread in the Earth’s interior. However, there are several models where viscoelastic formations comprise as few as 10 to 20 % of the volume. They include near-surface and sea-bottom formation due to the low consolidation of the sediments, oil and gas reservoirs due to fluid saturation, etc. At the same time, the major part of the medium is ideally elastic. In this situation, the use of computationally intense approaches for the viscoelastic materials throughout the computational domain is prodigal. So this paper presents an original finite-difference algorithm based on the domain decomposition technique with the individual scheme used inside subdomains. It means that the standard staggered grid scheme approximating the ideally elastic model is used in the main part of the model. In contrast, the attenuation-oriented scheme is utilized inside viscoelastic domains. As the real-size simulations are applied in parallel via domain decomposition technique, this means that the elementary domains assigned to a single core (node) should be different for elastic and viscoelastic parts of the model. The optimal domain decomposition technique minimizing the computational time (core-hours) is suggested in the paper. It is proved analytically and confirmed numerically that for the models with up to 25% of viscoelasticity, the speed-up of the hybrid algorithm is about 1.7 in comparison with purely viscoelastic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. Appelo and N. A. Petersson, ‘‘A stable finite difference method for the elastic wave equation on complex geometries with free surfaces,’’ Commun. Comput. Phys. 5, 84–107 (2009).

    MathSciNet  MATH  Google Scholar 

  2. S. Asvadurov, V. Druskin, M. Guddati, and L. Knizhnerman, ‘‘On optimal finite-difference approximation of PML,’’ SAIM J. Numer. Anal. 41, 287–305 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Asvadurov, L. Knizhnerman, and J. Pabon, ‘‘Finite-difference modeling of viscoelastic materials with quality factors of arbitrary magnitude,’’ Geophysics 69, 817–824 (2004).

    Article  Google Scholar 

  4. C. Baldassari, H. Barucq, H. Calandra, and J. Diaz, ‘‘Numerical performances of a hybrid local-time step** strategy applied to the reverse time migration,’’ Geophys. Prospect. 59, 907–919 (2011).

    Google Scholar 

  5. J. Blanch, J. Robertsson, and W. Symes, ‘‘Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique,’’ Geophysics 60, 176–184 (1995).

    Article  Google Scholar 

  6. T. Bohlen, ‘‘Parallel 3-D viscoelastic finite difference seismic modelling,’’ Comput. Geosci. 28, 887–899 (2002).

    Article  Google Scholar 

  7. R. Brossier, S. Operto, and J. Virieux, ‘‘Seismic imaging of complex onshore structures by 2D elastic frequency-domain fullwaveform inversion,’’ Geophysics 74, WCC63–WCC76 (2009).

    Article  Google Scholar 

  8. J. M. Carcione, ‘‘Seismic modeling in viscoelastic media,’’ Geophysics 58, 110–120 (1993).

    Article  Google Scholar 

  9. J. M. Carcione, ‘‘Constitutive model and wave equations for linear, viscoelastic, anisotropic media,’’ Geophysics 60, 537–548 (1995).

    Article  Google Scholar 

  10. J. M. Carcione and F. Cavallini, ‘‘A rheological model for anelastic anisotropic media with applications to seismic wave propagation,’’ Geophys. J. Int. 119, 338–348 (1994).

    Article  Google Scholar 

  11. J. M. Carcione and D. Gei, ‘‘Theory and numerical simulation of fluid-pressure diffusion in anisotropic porous media,’’ Geophysics 74, N31–N39 (2009).

    Google Scholar 

  12. J. M. Carcione, D. Kosloff, and R. Kosloff, ‘‘Wave propagation simulation in a linear viscoelastic medium,’’ Geophys. J. Int. 95, 597–611 (1988).

    Article  MATH  Google Scholar 

  13. J. M. Carcione, C. Morency, and J. E. Santos, ‘‘Computational poroelasticity – a review,’’ Geophysics 75, 75A229–75A243 (2010).

  14. R. M. Christensen, Theory of Viscoelasticity, an Introduction (Academic, New York, London, 1971).

    Google Scholar 

  15. Z. Dong and G. A. McMechan, ‘‘3-D viscoelastic anisotropic modeling of data from a multicomponent, multiazimuth seismic experiment in northeast Texas,’’ Geophysics 60, 1128–1138 (1995).

    Article  Google Scholar 

  16. F. H. Drossaert and A. Giannopoulos, ‘‘A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves,’’ Geophysics 72, T9–T17 (2007).

    Article  MATH  Google Scholar 

  17. E. Duveneck and P. M. Bakker, ‘‘Stable P-wave modeling for reverse-time migration in tilted TI media,’’ Geophysics 76, S65–S75 (2011).

    Article  Google Scholar 

  18. B. Engquist and A. Majda, ‘‘Absorbing boundary conditions for the numerical simulation of waves,’’ Math. Comp. 31, 629–651 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky, ‘‘An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling,’’ Geophys, J. Int. 183, 941–962 (2010).

    Article  Google Scholar 

  20. T. Hagstrom and S. Lau, ‘‘Radiation boundary conditions for Maxwell’s equations: A review of accurate time-domain formulations,’’ J. Comput. Math. 25, 305–336 (2007).

    MathSciNet  Google Scholar 

  21. S. Hestholm and B. Ruud, ‘‘3D free-boundary conditions for coordinate-transform finite-difference seismic modelling,’’ Geophys. Prospect. 50, 463–474 (2002).

    Article  Google Scholar 

  22. V. Kostin, V. Lisitsa, G. Reshetova, and V. Tcheverda, ‘‘Local time-space mesh refinement for simulation of elastic wave propagation in multi-scale media,’’ J. Comput. Phys. 281, 669–689 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Kristek, P. Moczo, and M. Galis, ‘‘Stable discontinuous staggered grid in the finite-difference modelling of seismic motion,’’ Geophys. J. Int. 183, 1401–1407 (2010).

    Article  Google Scholar 

  24. F. Kwok, ‘‘Optimized additive Schwarz with harmonic extension as a discretization of the continuous parallel Schwarz method,’’ SIAM J. Numer. Anal. 49, 1289–1316 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. R. Levander, ‘‘Fourth-order finite-difference P-SV seismograms,’’ Geophysics 53, 1425–1436 (1988).

    Article  Google Scholar 

  26. V. Lisitsa, ‘‘Optimal discretization of PML for elasticity problems,’’ Electron. Trans. Numer. Anal. 30, 258–277 (2008).

    MathSciNet  MATH  Google Scholar 

  27. V. Lisitsa, G. Reshetova, and V. Tcheverda, ‘‘Finite-difference algorithm with local time-space grid refinement for simulation of waves,’’ Comput. Geosci. 16, 39–54 (2012).

    Article  MATH  Google Scholar 

  28. V. Lisitsa, V. Tcheverda, and C. Botter, ‘‘Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation,’’ J. Comput. Phys. 311, 142–157 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Lisitsa, V. Tcheverda, and D. Vishnevsky, ‘‘Numerical simulation of seismic waves in models with anisotropic formations: Coupling Virieux and Lebedev finite-difference schemes,’’ Comput. Geosci. 16, 1135–1152 (2012).

    Article  Google Scholar 

  30. V. Lisitsa and D. Vishnevskiy, ‘‘Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity,’’ Geophys. Prospect. 58, 619–635 (2010).

    Article  Google Scholar 

  31. R. Martin, D. Komatitsch, and A. Ezziani, ‘‘An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media,’’ Geophysics 73, T51–T61 (2008).

    Article  Google Scholar 

  32. P. Moczo, E. Bystricky, J. Kristek, J. M. Carcione, and M. Bouchon, ‘‘Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures,’’ Bull. Seismol. Soc. Am. 87, 1305–1323 (1997).

    Google Scholar 

  33. A. Pleshkevich, D. Vishnevskiy, and V. Lisitsa, ‘‘Sixth-order accurate pseudo-spectral method for solving one-way wave equation,’’ Appl. Math. Comput. 359, 34–51 (2019).

    MathSciNet  MATH  Google Scholar 

  34. A. L. Pleshkevich, V. V. Lisitsa, D. M. Vishnevsky, V. D. Levchenko, and B. M. Moroz, ‘‘Parallel GPU-based implementation of one-way wave equation migration,’’ Supercomput. Front. Innov. 5, 34–37 (2018).

    Google Scholar 

  35. P. N. Rasolofosaon, ‘‘Generalized anisotropy parameters and approximations of attenuations and velocities in viscoelastic media of arbitrary anisotropy type; theoretical and experimental aspects,’’ Geophys. Prospect. 58, 637–655 (2010).

    Article  Google Scholar 

  36. E. H. Saenger, N. Gold, and S. A. Shapiro, ‘‘Modeling the propagation of the elastic waves using a modified finite-difference grid,’’ Wave Motion 31, 77–92 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Y. Suh, A. Yeh, B. Wang, J. Cai, K. Yoon, and Z. Li, ‘‘Cluster programming for reverse time migration,’’ The Leading Edge 29, 94–97 (2010).

    Article  Google Scholar 

  38. I. Tarrass, L. Giraud, and P. Thore, ‘‘New curvilinear scheme for elastic wave propagation in presence of curved topography,’’ Geophys. Prospect. 59, 889–906 (2011).

    Article  Google Scholar 

  39. V. Vavrycuk, ‘‘Velocity, attenuation, and quality factor in anisotropic viscoelastic media: A perturbation approach,’’ Geophysics 73, D63–D73 (2008).

    Article  Google Scholar 

  40. J. Virieux, ‘‘P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method,’’ Geophysics 51, 889–901 (1986).

    Article  Google Scholar 

  41. J. Virieux, H. Calandra, and R.-E. Plessix, ‘‘A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging,’’ Geophys. Prospect. 59, 794–813 (2011).

    Article  Google Scholar 

  42. J. Virieux, S. Operto, H. Ben-Hadj-Ali, R. Brossier, V. Etienne, F. Sourbier, L. Giraud, and A. Haidar, ‘‘Seismic wave modeling for seismic imaging,’’ The Leading Edge 28, 538–544 (2009).

    Article  Google Scholar 

  43. R. E. White, ‘‘The accuracy of estimating Q from seismic data,’’ Geophysics 57, 1508–1511 (1992).

    Article  Google Scholar 

  44. D. Zhang, M. Lamoureux, G. Margrave, and E. Cherkaev, ‘‘Rational approximation for estimation of quality Q factor and phase velocity in linear, viscoelastic, isotropic media,’’ Comput. Geosci. 15, 117–133 (2011).

    Article  MATH  Google Scholar 

  45. Y. Zhu and I. Tsvankin, ‘‘Plane-wave propagation in attenuative transversely isotropic media,’’ Geophysics 71, T17–T30 (2006).

    Article  Google Scholar 

Download references

Funding

D. Vishnevsky implemented the algorithm under the support of the Russian Foundation for Basic Research grant no. 18-05-00031. V. Lisitsa did the optimization of the algorithm under the support of the Russian President Agency grant MD-20.2019.5. S. Soloviev performed numerical experiments using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University and the using Cluster NKS-30T of the Siberian Supercomputer Center under the support of Russian Science Foundation grant no. 19-77-20004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. M. Vishnevsky, S. A. Solovyev or V. V. Lisitsa.

Additional information

(Submitted by Vl. V. Voevodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnevsky, D.M., Solovyev, S.A. & Lisitsa, V.V. Numerical Simulation of Wave Propagation in 3D Elastic Media with Viscoelastic Formations. Lobachevskii J Math 41, 1603–1614 (2020). https://doi.org/10.1134/S1995080220080211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220080211

Keywords:

Navigation