Log in

Reaction Mechanism Study of Chemical Transformations in Combustion of MoO3/TiO2/Al/Si Mixtures of Termite Type

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this paper, we studied the reaction mechanism of chemical transformations of the initial components in the combustion wave of MoO3/TiO2/Al/Si mixtures of the thermite type in the synthesis of molded molybdenum disilicide (MoSi2) and binary molybdenum titanium silicates ((MoTi)Si2). Syntheses were carried out in a high-temperature synthesis reactor at an initial argon pressure of P0 = 5 MPa. The effect of the ratio of initial reagents and geometric factors on the laws of synthesis of these materials was experimentally studied. The intervals of the component ratios, at which molybdenum and titanium silicides can be synthesized with specified compositions, are determined. We carried out experiments on stop** the combustion front. The chemical transformation of the components of the initial MoO3/TiO2/Al/Si mixtures in the combustion wave is shown to proceed in stages, and chemical reactions can be considered as chemically conjugated processes. The obtained results provide the scientific basis for the creation of promising molded silicide ceramics with high performance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhang, P. Chen, J. Yan, and S. Tang, Int. J. Refract. Met. Hard Mater. 22, 271 (2004).

    Article  CAS  Google Scholar 

  2. S. P. Tantry, S. K. Ramasesha, J.-S. Lee, T. Yano, U. Ramamurty, J. Am. Ceram. Soc. 87, 626 (2004).

    Article  CAS  Google Scholar 

  3. H. Qiang, M. Chaoli, Z. **nqing, and X. Huibin, Chin. J. Aeronaut. 21, 448 (2008).

    Article  Google Scholar 

  4. K. Matsuura, T. Ohmi, M. Kudoh, and T. Hasegawa, Metall. Mater. Trans., A 31, 747 (2000).

    Article  Google Scholar 

  5. D. D. Titov, Yu. F. Kargin, A. S. Lysenkov, N. A. Popova, and V. A. Gorshkov, Materialovedenie, No. 7, 45 (2012).

  6. A. G. Merzhanov, SHS on the Pathway to Industrialization (ISMAN, Chernogolovka, 2001).

    Google Scholar 

  7. A. G. Merzhanov, J. Mater. Chem. 14, 1779 (2004).

    Article  CAS  Google Scholar 

  8. E. A. Levashov, A. S. Mukasyan, A. S. Rogachev, and D. V. Shtansky, Int. Mater. Rev. 62, 203 (2017).

    Article  CAS  Google Scholar 

  9. V. I. Yukhvid, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 5, 62 (2006).

  10. V. I. Yukhvid, in Proceedings of the Conference on SHS of Materials (Taylor and Francis, New York, 2002), p. 238.

    Google Scholar 

  11. A. E. Levashov, A. S. Rogachev, V. I. Yukhvid, and I. P. Borovinskaya, Physico-Chemical and Technological Principles of Self-Propagating High-Temperature Synthesis (BINOM, Moscow, 1999) [in Russian].

    Google Scholar 

  12. V. A. Gorshkov, A. A. Samboruk, and V. I. Yukhvid, Russ. J. Phys. Chem. B 3, 798 (2009).

    Article  Google Scholar 

  13. V. A. Gorshkov, V. I. Yukhvid, P. A. Miloserdov, and N. V. Sachkova, Inorg. Mater. 47, 375 (2011).

    Article  CAS  Google Scholar 

  14. V. A. Gorshkov, V. I. Yukhvid, P. A. Miloserdov, N. V. Sachkova, and D. Yu. Kovalev, Int. J. Self-Propag. High-Temp Synth. 20, 100 (2011).

    Article  CAS  Google Scholar 

  15. P. A. Miloserdov, V. A. Gorshkov, V. I. Yukhvid, and N. V. Sachkova, Perspekt. Mater., No. 6, 69 (2013).

  16. V. A. Gorshkov, P. A. Miloserdov, N. V. Sachkova, and I. D. Kovalev, Int. J. Self-Propag. High-Temp Synth. 23, 36 (2014).

    Article  CAS  Google Scholar 

  17. A. Shiryaev, Int. J. Self-Propag. High-Temp Synth. 4, 351 (1995).

    CAS  Google Scholar 

  18. A. I. Volkov, and I. M. Zharskii, Great Chemical Handbook (Sovremennaya Shkola, Minsk, 2005) [in Russian].

    Google Scholar 

  19. Chemical Encyclopedy, Ed. by I. L. Knunyants (Sovetskaya Entsiklopediya, Moscow, 1992), Vol. 3 [in Russian].

    Google Scholar 

  20. R. Ripan and I. Chetyanu, Inorganic Chemistry (Mir, Moscow, 1971), Vol. 2 [in Russian].

    Google Scholar 

  21. A. G. Merzhanov, Dokl. Phys. Chem. 434, 159 (2010).

    Article  CAS  Google Scholar 

  22. A. G. Merzhanov, Vestn. Akad. Nauk SSSR, No. 8, 10 (1979).

  23. N. P. Lyakishev, Yu. L. Pliner, G. F. Ignatenko, and S. I. Lappo, Aluminothermy (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  24. V. I. Yukhvid, Self-Propagating High-Temperature Synthesis: Theory and Practice (Territoriya, Chernogolovka, 2001), p. 252 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gorshkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, V.A., Miloserdov, P.A. & Sachkova, N.V. Reaction Mechanism Study of Chemical Transformations in Combustion of MoO3/TiO2/Al/Si Mixtures of Termite Type. Russ. J. Phys. Chem. B 13, 112–118 (2019). https://doi.org/10.1134/S1990793119010226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119010226

Keywords

Navigation