Log in

Conformational polymorphysm of G-rich fragments of DNA Alu-repeats. I. Noncanonical structures

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

We report results of the first systematic study of conformational polymorphism of G-rich DNA fragments of Alu-repeats. Alu retrotransposons are primate-specific short interspersed elements. Using the Alu sequence of the prooncogen bcl2 intron and the consensus AluSx sequence as representative examples, we have determined characteristic Alu sites that are capable of adopting G-quadruplex (GQ) conformations (i.e., potential quadruplex sites—PQSAlu), and demonstrated by bioinformatics methods that these sites are Alu-specific in the human genome. Genomic frequencies of PQSAlu were assessed (~1/10000 bp). These sites were found to be characteristic of young (active) Alu families (Alu-Y). A recombinant DNA sequence bearing the Alu element of the human bcl2 gene (304 bp) and its PQS-mutant (Alu-PQS) were constructed. The formation of noncanonical structures in Alubcl2 dsDNA and their absence in the case of Alu-PQS have been shown using DMS-footprinting and atomic force microscopy (AFM). Expression vectors bearing wild-type and mutant Alu insertions in the promoter regions of the reporter gene have been prepared, and their regulatory effects have been compared during transfection of НЕК293 and HeLa cells. We suggest that the dynamic study of the spatial organization of Alu repeats may provide insight into the mechanisms of genomic rearrangements responsible for the development of many oncological and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman, Y., Pilpel, Y., and Oren, M., J. Mol. Cell. Biol., 2014, vol. 6, pp. 192–197. mju020 [pii] doi 10.1093/jmcb/mju020

    Article  CAS  Google Scholar 

  2. Cui, F., Sirotin, M.V., and Zhurkin, V.B., Biol. Direct., 2011, vol. 6, p. 2. 1745-6150-6-2 [pii] doi 10.1186/1745-6150-6-2

    Article  CAS  Google Scholar 

  3. Spengler, R.M., Oakley, C.K., and Davidson, B.L., Hum. Mol. Genet., 2014, vol. 23, pp. 1783–1793. ddt569 [pii] doi 10.1093/hmg/ddt569

    Article  CAS  Google Scholar 

  4. Bose, P., Hermetz, K.E., Conneely, K.N., and Rudd, M.K., PLoS One, 2014, vol. 9, e101607. PONED-14-14652 [pii] doi 10.1371/journal.pone.0101607

    Article  Google Scholar 

  5. Hoffman, Y., Dahary, D., Bublik, D.R., Oren, M., and Pilpel, Y., Bioinformatics, 2013, vol. 29, pp. 894–902. btt044 [pii] doi 10.1093/bioinformatics/btt044

    Article  CAS  Google Scholar 

  6. Batzer, M.A. and Deininger, P.L., Nat. Rev. Genet., 2002, vol. 3, pp. 370–379. [pii] doi 10.1038/nrg798

    Article  CAS  Google Scholar 

  7. Chen, L.L. and Carmichael, G.G., Cell Cycle, 2008, vol. 7, pp. 3294–3301. 6927 [pii]

    Article  CAS  Google Scholar 

  8. Kleinberger, Y. and Eisenberg, E., BMC Genomics, 2010, vol. 11, p. 453. 1471-2164-11-453 [pii] doi 10.1186/1471-2164-11-453

    Article  Google Scholar 

  9. Wahlstedt, H. and Ohman, M., Wiley Interdiscip. Rev. RNA, 2011, vol. 2, pp. 761–771. doi 10.1002/wrna.89

    Article  CAS  Google Scholar 

  10. Mallela, A. and Nishikura, K., Crit. Rev. Biochem. Mol. Biol., 2012, vol. 47, pp. 493–501. doi 10.3109/10409238.2012.714350

    Article  CAS  Google Scholar 

  11. Nishikura, K., Nat. Rev. Mol. Cell. Biol., 2015. nrm.2015.4 [pii] doi 10.1038/nrm.2015.4

    Google Scholar 

  12. Saini, N., Zhang, Y., Usdin, K., and Lobachev, K.S., Biochimie, 2013, vol. 95, pp. 117–123. S0300-9084(12)00405-1 [pii] doi 10.1016/j.biochi.2012.10.005

    Article  CAS  Google Scholar 

  13. Bharti, S.K., Sommers, J.A., Zhou, J., Kaplan, D.L., Spelbrink, J.N., Mergny, J.L., and Brosh, R.M., Jr., J. Biol. Chem., 2014, vol. 289, pp. 29975–29993. M114.567073 [pii] doi 10.1074/jbc.M114.567073

    Article  CAS  Google Scholar 

  14. Dong, D.W., Pereira, F., Barrett, S.P., Kolesar, J.E., Cao, K., Damas, J., Yatsunyk, L.A., Johnson, F.B., and Kaufman, B.A., BMC Genomics, 2014, vol. 15, p. 677. 1471-2164-15-677 [pii] doi 10.1186/1471-2164-15-677

    Article  Google Scholar 

  15. Kejnovsky, E., Tokan, V., and Lexa, M., Chromosome Res., 2015, vol. 23, pp. 615–623. [pii] doi 10.1007/s10577-015-9491-7

    Article  CAS  Google Scholar 

  16. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., and Rehm, H.L., Genet. Med., 2015, vol. 17, pp. 405–424. gim201530 [pii] doi 10.1038/gim.2015.30

    Article  Google Scholar 

  17. Kriegs, J.O., Churakov, G., Jurka, J., Brosius, J., and Schmitz, J., Trends Genet., 2007, vol. 23, pp. 158–161. S0168-9525(07)00037-6 [pii] doi 10.1016/j.tig.2007.02.002

    Article  CAS  Google Scholar 

  18. Luk’yanova, T.A., Zaitseva, M.A., Karpov, V.A., and Pozmogova, G.E., Bioorgan. Khim., 2008, vol. 34, pp. 83–88. doi 10.1007/s11171-008-1010-6

    Google Scholar 

  19. Tatarinova, O.N., Luk’yanova, T.N., Zaitseva, M.A., Veremeev, K.Yu., Karpov, V.A., Chuvilin, A.N., Petrunin, D.D., and Pozmogova, G.E., Byull. Eksper. Biol. Med., 2008, vol. 145, pp. 280–284.

    Article  Google Scholar 

  20. Tatarinova, O., Tsvetkov, V., Basmanov, D., Barinov, N., Smirnov, I., Timofeev, E., Kaluzhny, D., Chuvilin, A., Klinov, D., Varizhuk, A., and Pozmogova, G., PLoS One, 2014, vol. 9, e89383. PONED-13-39549 [pii] doi 10.1371/journal.pone.0089383

    Article  Google Scholar 

  21. Klinov, D.V., Lagutina, I.V., Prokhorov, V.V., Neretina, T., Khil, P.P., Lebedev, Y.B., Cherny, D.I., Demin, V.V., and Sverdlov, E.D., Nucl. Acids Res., 1998, vol. 26, pp. 4603–4610. gkb752 [pii]

    Article  CAS  Google Scholar 

  22. Li, X.M., Zheng, K.W., Zhang, J.Y., Liu, H.H., He, Y.D., Yuan, B.F., Hao, Y.H., and Tan, Z., Proc. Natl. Acad. Sci. USA, 2015, vol. 112, pp. 14581–14586. 1516925112 [pii] doi 10.1073/pnas.1516925112

    Article  CAS  Google Scholar 

  23. Daniel, C., Lagergren, J., and Ohman, M., Biochimie, 2015, vol. 117, pp. 22–27. S0300-9084(15)00170-4 [pii] doi 10.1016/j.biochi.2015.05.020

    Article  CAS  Google Scholar 

  24. Luo, Y., Lu, X., and **e, H., Biomed. Res. Int., 2014, vol. 2014, p. 784706. doi 10.1155/2014/784706

    Google Scholar 

  25. Grandi, F.C. and An, W., Mob. Genet. Elements, 2013, vol. 3, e25674. 2013MGE0003R [pii] doi 10.4161/mge.25674

    Article  Google Scholar 

  26. Burns, K.H. and Boeke, J.D., Cell, 2012, vol. 149, pp. 740–752. S0092-8674(12)00517-X [pii] doi 10.1016/j.cell.2012.04.019

    Article  CAS  Google Scholar 

  27. Cheng, L.C., Pai, T.W., and Li, L.A., Steroids, 2012, vol. 77, pp. 100–109. S0039-128X(11)00314-X [pii] doi 10.1016/j.steroids.2011.10.010

    Article  CAS  Google Scholar 

  28. Zheng, K.W., Chen, Z., Hao, Y.H., and Tan, Z., Nucl. Acids Res., 2010, vol. 38, pp. 327–338. gkp898 [pii] doi 10.1093/nar/gkp898

    Article  CAS  Google Scholar 

  29. Husby, J., Todd, A.K., Platts, J.A., and Neidle, S., Biopolymers, 2013, vol. 99, pp. 989–1005. doi 10.1002/bip.22340

    CAS  Google Scholar 

  30. Mela, I., Kranaster, R., Henderson, R.M., Balasubramanian, S., and Edwardson, J.M., Biochemistry, 2012, vol. 51, pp. 578–585. doi 10.1021/bi201600g

    Article  CAS  Google Scholar 

  31. Henderson, A., Wu, Y., Huang, Y.C., Chavez, E.A., Platt, J., Johnson, F.B., Brosh, R.M., Jr., Sen, D., and Lansdorp, P.M., Nucl. Acids Res., 2014, vol. 42, pp. 860–869. gkt957 [pii] doi 10.1093/nar/gkt957

    Article  CAS  Google Scholar 

  32. Ma, D.L., Zhang, Z., Wang, M., Lu, L., Zhong, H.J., and Leung, C.H., Chem. Biol., 2015, vol. 22, pp. 812–828. S1074-5521(15)00242-2 [pii] doi 10.1016/j.chembiol. 2015.06.016

    Article  CAS  Google Scholar 

  33. Rivetti, C. and Codeluppi, S., Ultramicroscopy, 2001, vol. 87, pp. 55–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Pozmogova.

Additional information

Original Russian Text © A.V. Sekridova, A.M. Varizhuk, O.N. Tatarinova, V.V. Severov, N.A. Barinov, I.P. Smirnov, V.N. Lazarev, D.V. Klinov, G.E. Pozmogova, 2017, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekridova, A.V., Varizhuk, A.M., Tatarinova, O.N. et al. Conformational polymorphysm of G-rich fragments of DNA Alu-repeats. I. Noncanonical structures. Biochem. Moscow Suppl. Ser. B 11, 62–71 (2017). https://doi.org/10.1134/S1990750817010097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750817010097

Keywords

Navigation