Log in

Application of N,N,N',N'-Tetramethyl-p-Phenylenediamine and α,ω-Hexadecanedioic Acid for Determination of the H+/O Ratios of Complexes III and IV of the Liver Mitochondrial Respiratory Chain under Free Respiration Conditions

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract—

Stimulation of mitochondrial respiration in state 4 without changes in passive proton leakage is known to be accompanied by a decrease in the H+/O ratio. In the present work, it was found that during the oxidation of succinate by liver mitochondria, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and α,ω-hexadecanedioic acid (HDA) effectively stimulate respiration in state 4, and their action is, unlike the protonophore uncoupler DNP, is not caused by an increase in the proton conductivity of the inner membrane. Under these conditions, TMPD and HDA do not significantly affect the efficiency of oxidative ATP synthesis and energy transformation by complex IV (cytochrome c oxidase). The data obtained are considered as evidence that during the oxidation of succinate by liver mitochondria, TMPD and HDA selectively switch off ETC complex III from energy transformation. It is theoretically substantiated that, under these conditions, the H+/O ratio can be determined based on the ratio of respiratory rates in the absence and presence of TMPD and HDA. Based on this model, we considered the change in the H+/O ratio depending on the stimulation of mitochondrial respiration in state 4 by TMPD and HDA. It has been established that under the influence of TMPD or HDA, the value of the H+/O ratio decreases during the oxidation of succinate from 6 to the limiting values of 2. We conclude that in liver mitochondria during free respiration, in contrast to the oxidative ATP synthesis, the values of the H+/O ratio are 4 and 2 for complexes III and IV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Mitchell P. 2011. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim. Biophys. Acta. 1807, 1507–1538.

    Article  CAS  PubMed  Google Scholar 

  2. Mitchell P., Moyle J. 1967. Respiration-driven proton translocation in rat liver mitochondria. Biochem. J. 105, 1147–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Skulachev V.P., Bogachev A.V., Kasparinsky F.O. 2013. Principles of bioenergetics. Berlin: Springer–Verlag.

    Book  Google Scholar 

  4. Cadenas S. 2018. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta. Bioenerg. 1859, 940–950.

    Article  CAS  Google Scholar 

  5. Mazat J.P., Ransac S., Heiske M., Devin A., Rigoulet M. 2013. Mitochondrial energetic metabolism – some general principles. IUBMB Life. 65, 171–179.

    Article  CAS  PubMed  Google Scholar 

  6. Zorova L.D., Popkov V.A., Plotnikov E.Y., Silachev D.N., Pevzner I.B., Jankauskas S.S., Babenko V.A., Zorov S.D., Balakireva A.V., Juhaszova M., Sollott S.J., Zorov D.B. 2018. Mitochondrial membrane potential. Anal. Biochem. 552, 50–59.

    Article  CAS  PubMed  Google Scholar 

  7. Klingenberg M. 2008. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta. 1778, 1978–2021.

    Article  CAS  PubMed  Google Scholar 

  8. Porter R.K., Brand M.D. 1993. Body mass dependens of H+ leak in mitochondria and its relevance to metabolic rate. Nature. 362, 628–630.

    Article  CAS  PubMed  Google Scholar 

  9. Nicholls D.G. 2021. Mitochondrial proton leaks and uncoupling proteins. Biochim. Biophys. Acta. Bioenerg. 1862, 148428.

    Article  CAS  Google Scholar 

  10. Vinogradov A.D., Grivennikova V.G. 2016. Oxidation of NADH and ROS production by respiratory complex I. Biochim. Biophys. Acta. 1857, 863–871.

    Article  CAS  PubMed  Google Scholar 

  11. Hummer G., Wikström M. 2016. Molecular simulation and modeling of complex I. Biochim Biophys Acta. 1857, 915–921.

    Article  CAS  PubMed  Google Scholar 

  12. Sarewicz M., Osyczka A. 2015. Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol. Rev. 95, 219–243.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fisher N., Meunier B., Biagini G.A. 2020. The cytochrome bc 1 complex as an antipathogenic target. FEBS Lett. 594, 2935–2952.

    Article  CAS  PubMed  Google Scholar 

  14. Kao W.-C., Hunte C. 2022. Quinone binding sites of cyt bc complexes analysed by X-ray crystallography and cryogenic electron microscopy. Biochem. Soc. Trans. 50, 877–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wikström M., Krab K., Sharma V. 2018. Oxygen activation and energy conservation by cytochrome c oxidase. Chem. Rev. 118, 2469–2490.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brand M.D., Reynafarje B., Lehninger A.L. 1976. Re-evaluation of the H+/site ratio of mitochondrial electron transport with the oxygen pulse technique. J. Biol. Chem. 251, 5670–5679.

    Article  CAS  PubMed  Google Scholar 

  17. Reynafarje B., Brand M.D., Lehninger A.L. 1976. Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements. J. Biol. Chem. 251, 7442–7451.

    Article  CAS  PubMed  Google Scholar 

  18. Papa S., Guerrieri F., Lorusso M., Izzo G., Boffoli D., Capuano F., Capitanio N., Altamura N. 1980. The H+/e stoicheiometry of respiration-linked proton translocation in the cytochrome system of mitochondria. Biochem. J. 192, 203–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Watt I.N., Montgomery M.G., Runswick M.J., Leslie A.G., Walker J.E. 2010. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc. Natl. Acad. Sci. USA. 107, 16823–16827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hinkle P.C. 2005. P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta. 1706, 1–11.

    Article  CAS  PubMed  Google Scholar 

  21. Stoner C.D. 1987 Determination of the P/2e stoichiometries at the individual coupling sites in mitochondrial oxidative phosphorylation. Evidence for maximum values of 1.0, 0.5, and 1.0 at sites 1, 2, and 3. J. Biol. Chem. 262, 10445–10453.

    Article  CAS  PubMed  Google Scholar 

  22. Hinkle P.C., Kumar M.A., Resetar A., Harris D.L. 1991. Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry. 30, 3576–3582.

    Article  CAS  PubMed  Google Scholar 

  23. Samartsev V.N., Semenova A.A., Ivanov A.N., Dubinin M.V. 2022. Comparative study of free respiration in liver mitochondria during oxidation of various electron donors and under conditions of shutdown of complex III of the respiratory chain. Biochem. Biophys. Res. Commun. 606, 163–167.

    Article  CAS  PubMed  Google Scholar 

  24. Brown G.C. 1989. The relative proton stoihiometries of the mitochondrial proton pumps are independent of the proton motive force. J. Biol. Chem. 264, 14704–14109.

    Article  CAS  PubMed  Google Scholar 

  25. Chien L.F., Brand M.D. 1996. The effect of chloroform on mitochondrial energy transduction. Biochem. J. 320, 837–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skulachev V.P. 1998. Uncoupling: New approaches to an old problem of bioenergetics. Biochim. Biophys. Acta. 1363, 100–124.

    Article  CAS  PubMed  Google Scholar 

  27. Luvisetto S., Conti E., Buso M., Azzone G.F. 1991. Flux ratios and pump stoichiometries at sites II and III in liver mitochondria. Effect of slips and leaks. J. Biol. Chem. 266, 1034–1042.

    Article  CAS  PubMed  Google Scholar 

  28. Markova O.V., Bondarenko D.I., Samartsev V.N. 1999. The anionic carrier-mediated uncoupling effect of dicarboxylic fatty acids depends on the location of the second carboxyl group. Biochemistry (Moscow). 64, 565–570.

    CAS  PubMed  Google Scholar 

  29. Semenova A.A., Samartsev V.N., Dubinin M.V. 2021. The stimulation of succinate-fueled respiration of rat liver mitochondria in state 4 by α,ω-hexadecanedioic acid without induction of proton conductivity of the inner membrane. Intrinsic uncoupling of the bc 1 complex. Biochimie. 181, 215–225.

    Article  CAS  PubMed  Google Scholar 

  30. Terada H., Shima O., Yoshida K., Shinohara Y. 1990. Effects of the local anesthetic bupivacaine on oxidative phosphorilation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions. J. Biol. Chem. 265, 7837–7842.

    Article  CAS  PubMed  Google Scholar 

  31. Alexandre A., Lehninger A.L. 1984. Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function. Biochim. Biophys. Acta. 767, 120–129.

    Article  CAS  PubMed  Google Scholar 

  32. Samartsev V.N., Semenova A.A., Dubinin M.V. 2020. A comparative study of the action of protonophore uncouplers and decoupling agents as inducers of free respiration in mitochondria in states 3 and 4: Theoretical and experimental approaches. Cell Biochem. Biophys. 78, 203–216.

    Article  CAS  PubMed  Google Scholar 

  33. Garlid K. D., Nakashima R. A. 1983. Studies on the mechanism of uncoupling by amine local anesthetics. Evidence for mitochondrial proton transport mediated by lipophilic ion pairs. J. Biol. Chem. 258, 7974–7980.

    Article  CAS  PubMed  Google Scholar 

  34. Popova, L.B., Nosikova, E.S., Kotova, E.A., Tarasova, E.O., Nazarov, P.A., Khailova, L.S., Balezina, O.P., Antonenko, Y.N. 2018. Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials. Biochim. Biophys. Acta Biomembr. 1860, 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  35. Brierley G.P., Jurkowitz M., Scott K.M., Merola A.J. 1970. Ion transport by heart mitochondria. XX. Factors affecting passive osmotic swelling of isolated mitochondria. J. Biol. Chem. 245, 5404–5411.

    Article  CAS  PubMed  Google Scholar 

  36. Samartsev V.N., Kozhina O.V., Polishchuk L.S. 2005. Correlation between respiration and ATP synthesis in mitochondria at different degrees of uncoupling of oxidative phosphorylation. Biophysics. 50, 660–667.

    CAS  Google Scholar 

  37. Terada H. 1981. The interaction of highly active uncouplers with mitochondria. Biochim. Biophys. Acta. 639, 225–242.

    Article  CAS  PubMed  Google Scholar 

  38. Ponnalagu D., Singh H. 2017. Anion channels of mitochondria. Handb. Exp. Pharmacol. 240, 71–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Groen A.K., Wanders R.J.A., Westerhoff H.V., Van der Meer R., Tager J.M. 1982. Quantification of the contribution of various steps to the control of mitochondrial respiration. J. Biol. Chem. 257, 2754–2757.

    Article  CAS  PubMed  Google Scholar 

  40. Mookerjee S.A., Gerencser A.A., Watson M.A., Brand M.D. 2021. Controlled power: How biology manages succinate-driven energy release. Biochem. Soc. Trans. 49, 2929–2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Samartsev V.N., Chezganova S.A., Polishchuk L.S., Paidiganov A.P., Vidyakina O.V., Zeldi I.P. 2003. Temperature dependence of rat liver mitochondrial respiration upon uncoupling of oxidative phosphorylation by fatty acids. Influence of inorganic phosphate. Biochemistry (Moscow). 68, 759–768.

    Article  Google Scholar 

Download references

Funding

The work was supported by grant from the Russian Foundation for Basic Research (20-015-00124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dubinin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Commission on Bioethics of the Mari State University.

Additional information

Translated by A. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samartsev, V.N., Semenova, A.A., Belosludtsev, K.N. et al. Application of N,N,N',N'-Tetramethyl-p-Phenylenediamine and α,ω-Hexadecanedioic Acid for Determination of the H+/O Ratios of Complexes III and IV of the Liver Mitochondrial Respiratory Chain under Free Respiration Conditions. Biochem. Moscow Suppl. Ser. A 17, 117–126 (2023). https://doi.org/10.1134/S199074782302006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074782302006X

Keywords:

Navigation