Log in

Effect of Dequalinium on Respiration and the Inner Membrane Permeability of Rat Liver Mitochondria

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effect of the lipophilic penetrating cation dequalinium on rat liver mitochondria was studied. It was found that dequalinium dose-dependently inhibits the respiration rate of rat liver mitochondria in ADP-stimulated (V3) and DNP-stimulated (uncoupled) states. This can be due to the fact that dequalinium is a potent inhibitor of complex III of the mitochondrial respiratory chain. It was shown that dequalinium induces a high-amplitude swelling of rat liver mitochondria. The dequalinium-induced swelling of the organelles depends on the presence of inorganic phosphate in the incubation medium: in the absence of phosphate or in the presence of the phosphate carrier inhibitor mersalyl in the phosphate-containing medium, no swelling of the mitochondria was observed. At low concentrations of dequalinium (≤10 μM), this swelling is inhibited by cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. At the same time, at high concentrations of dequalinium (>10 μM), cyclosporin A becomes ineffective. It was found that in the presence of dequalinium the rate of the H2O2 production increased in rat liver mitochondria. Possible mechanisms of toxic effect of dequalinium chloride are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skulachev V.P., Sharaf A.A., Liberman E.A. 1967. Proton conductors in the respiratory chain and artificial membranes. Nature. 216 (5116), 718–719.

    Article  PubMed  CAS  Google Scholar 

  2. Liberman E.A., Topaly V.P., Tsofina L.M., Jasaitis A.A., Skulachev V.P. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 222 (5198), 1076–1078.

    Article  PubMed  CAS  Google Scholar 

  3. Chen Z.P., Li M., Zhang L.J., He J.Y., Wu L., **ao Y.Y., Duan J.A., Cai T., Li W.D. 2016. Mitochondria-targeted drug delivery system for cancer treatment. J. Drug Target. 24 (6), 492–502.

    Article  PubMed  CAS  Google Scholar 

  4. Skulachev V.P., Bogachev A.V., Kasparinskii F.O. 2010. Membrannaya bioenergetika (Membrane bioenergetics). M.: Moscow State Univ.

    Google Scholar 

  5. Kamo N, Muratsugu M., Hongoh R., Kobatake Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 49 (2), 105–121.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang L. 2012. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials. 33, 565–3

    Article  PubMed  CAS  Google Scholar 

  7. Khailova L.S., Silachev D.N., Rokitskaya T.I., Avetisyan A.V., Lyamsaev K.G., Severina I.I., Il’yasova T.M., Gulyaev M.V., Dedukhova V.I., Trendeleva T.A., Plotnikov E.Y., Zvyagilskaya R.A., Chernyak B.V., Zorov D.B., Antonenko Y.N., Skulachev V.P. 2014. A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. Biochim. Biophys. Acta. 1837(10), 1739–1747.

    CAS  Google Scholar 

  8. Khailova L.S., Nazarov P.A., Sumbatian N.V., Korshunova G.A., Rokitskaya T.I., Dedukhova V.I., Antonenko Yu.N., Skulachev V.P. 2015. Uncoupling and toxic action of alkyl three phenyl phosphonium cations on mitochondria and bacteria Bacillus subtilis, depending on the length of the alkyl fragment. Biokhimia (Rus.). 80, 1851–3

    Google Scholar 

  9. Babbs M., Collier H.O., Austin W.C., Potter M.D., Taylor E.P. 1956. Salts of decamethylene-bis-4-aminoquinaldinium (dequadin); A new antimicrobial agent. J. Pharm. Pharmacol. 8 (2), 110–119.

    Article  PubMed  CAS  Google Scholar 

  10. Mendling W., Weissenbacher E.R., Gerber S., Prasauskas V., Grob P. 2016. Use of locally delivered dequalinium chloride in the treatment of vaginal infections: A review. Arch. Gynecol. Obstet. 293 (3), 469–484.

    Article  PubMed  CAS  Google Scholar 

  11. Pajuelo L., Calvino E., Diez J.C., Boyano-Adanez Mdel C., Gil J., Sancho P. 2011. Dequalinium induces apoptosis in peripheral blood mononuclear cells isolated from human chronic lymphocytic leukemia. Invest. New Drugs. 29 (6), 1156–1163.

    Article  PubMed  CAS  Google Scholar 

  12. Weiss M.J., Wong J.R., Ha C.S., Bleday R., Salem R.R., Steele G.D. Jr., Chen L.B. 1987. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc. Natl. Acad. Sci. USA. 84 (15), 5444–5448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sancho P., Galeano E., Nieto E., Delgado M.D., García-Pérez A.I. 2007. Dequalinium induces cell death in human leukemia cells by early mitochondrial alterations which enhance ROS production. Leuk. Res. 31 (7), 969–978.

    Article  PubMed  CAS  Google Scholar 

  14. Makowska K., Estan M.C., Ganan-Gomez I., Boyano-Adanez M.C., Garcia-Perez A.I., Sancho P. 2014. Dequalinium-induced changes in mitochondrial functions precede oxidative stress and apoptosis of pc-3 cells of the humane prostate cancer. Molek. Biologia (Rus.). 48 (3), 416–428.

    CAS  Google Scholar 

  15. Weissig V., Torchilin V.P. 2001. Towards mitochondria gene therapy: DQAsomes as a strategy. J. Drug Target. 9, 1–3

    Article  PubMed  CAS  Google Scholar 

  16. Abdul M., Hoosein N. 2002. Expression and activity of potassium ion channels in human prostate cancer. Cancer. Lett. 186, 99–3

    Article  PubMed  CAS  Google Scholar 

  17. Bodden W.L., Palayoor S.T., Hait W.N. 1986. Selective antimitochondrial agents inhibit calmodulin. Biochem. Biophys. Res. Commun. 135 (2), 574–582.

    Article  PubMed  CAS  Google Scholar 

  18. Hait W.N. 1987. Targeting calmodulin for the development of novel cancer chemotherapeutic agents. Anticancer Drug Des. 2 (2), 139–149.

    PubMed  CAS  Google Scholar 

  19. Rotenberg S.A., Smiley S., Ueffing M., Krauss R.S., Chen L.B., Weinstein I.B. 1990. Inhibition of rodent protein kinase C by the anticarcinoma agent dequalinium. Cancer Res. 50 (3), 677–685.

    PubMed  CAS  Google Scholar 

  20. Gamboa-Vujicic G., Emma D.A., Liao S.Y., Fuchtner C., Manetta A. 1993. Toxicity of the mitochondrial poison dequalinium chloride in a murine model system. J. Pharm. Sci. 82 (3), 231–235.

    Article  PubMed  CAS  Google Scholar 

  21. Trendeleva T.A., Rogov A.G., Cherepanov D.A., Sukhanova E.I., Il’yasova T.M., Severina I.I., Zviagilskaya R.A. 2012. Interactions of tetraphenylphosphonium and dodecyltriphenylphosphonium with lipid membranes and mitochondria. Biokhimia (Rus.). 77 (9), 1230–1239.

    Google Scholar 

  22. Vercesi A.E., Bernardes C.F., Hoffmann M.E., Gadelha F.R., Docampo R. 1991. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J. Biol. Chem. 266 (22), 14431–14434.

    PubMed  CAS  Google Scholar 

  23. Zhuo S., Allison W.S. 1988. Inhibition and photoinactivation of the bovine heart mitochondrial F1-ATPase by the cytotoxic agent, dequalinium. Biochem. Biophys. Res Commun. 152 (3), 968–972.

    Article  PubMed  CAS  Google Scholar 

  24. Halestrap A.P., Richardson A.P. 2015. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J. Mol. Cell Cardiol. 78, 129–3

    Article  PubMed  CAS  Google Scholar 

  25. Belosludtsev K.N., Belosludtseva N.V., Agafonov A.V., Astashev M.E., Kazakov A.S., Saris N.-E.L., Mironova G.D. 2014. Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: A comparative study. Biochim. Biophys. Acta. 1838(10), 2600–2606.

    Article  PubMed  CAS  Google Scholar 

  26. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1), 265–275.

    PubMed  CAS  Google Scholar 

  27. Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang E., Zhang C., Su Y., Cheng T., Shi C. 2011. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug. Discov. Today. 16, 140–3

    Article  PubMed  CAS  Google Scholar 

  29. Muller F.L., Liu Y., Van Remmen H. 2004. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279 (47), 49064–49073.

    Article  PubMed  CAS  Google Scholar 

  30. Moore A.L., Bonner W.D. 1982. Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol. 70 (5), 1271–1276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Belosludtsev K.N., Mironova G.D. 2012. Mitochondrial lipid palmitate/Ca2+-induced pore and its possible role in the degradation of nerve cells. Patologich. Fiziol. Eksperim. Terapia (Rus.). (3), 20–32.

    Google Scholar 

  32. Crompton M., Ellinger H., Costi A. 1988. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem. J. 255, 357–3

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Varanyuwatana P., Halestrap A.P. 2012. The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion. 12, 120–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. He L., Lemasters J.J. 2002. Regulated and unregulated mitochondrial permeability transition pores: A new paradigm of pore structure and function. FEBS Lett. 512, 1–3

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Belosludtsev.

Additional information

Original Russian Text © K.N. Belosludtsev, N.V. Belosludtseva, K.S. Tenkov, V.A. Sharapov, E.A. Kosareva, M.V. Dubinin, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 6, pp. 101–108.

An article from Special Issue Receptors and Intracellular Signaling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belosludtsev, K.N., Belosludtseva, N.V., Tenkov, K.S. et al. Effect of Dequalinium on Respiration and the Inner Membrane Permeability of Rat Liver Mitochondria. Biochem. Moscow Suppl. Ser. A 12, 121–127 (2018). https://doi.org/10.1134/S1990747818020034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818020034

Keywords

Navigation