Log in

Ultrastructural study of glial gap junctions in the thalamic nuclei of rat

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Despite a growing interest in gap junctions (GJs) of mammalian brain, their distribution and role in cell ensembles of thalamus remains unknown. The aim of this work was ultrastructural and immunoelectron study of glial GJs in ventral posteromedial (VPM) and posteromedial (POM) thalamic nuclei and thalamic reticular nucleus (RTN) of rats. GJs were identified by standard techniques of transmission electron microscopy and by pre-embedding immunohistochemistry protocol using anti-connexin-43 antibodies with Dako EnVision System + Peroxidase (DAB) detecting system. It was found that glial cells surround thalamocortical axons and axo-spiny synapses and form numerous elongated gap junction plaques located near chemical synapses. A single axon-spiny chemical synapse can be surrounded by several (up to 4) gap junctions that seem to form peculiar networks of glial cells united by GJs. Closely adjacent gap junctions disposed at an angle from 30° to 140° to each other were revealed. Immunoelectron labeling demonstrated that gap junction plaques located around chemical synapses have an astroglial origin. Despite the accumulation of osmiophilic material in the contact zone, ultrastructural signs of GJs were clearly identified. Due to the formation of intercellular glia-glial GJs astroglia may acquire a function of spatial buffer to regulate extracellular concentration of potassium and other ions, providing intracellular and extracellular ion homeostasis. We believe that astroglial processes joined into a network by GJs play a key role in the circulation of information and can modulate subcortical neuronal ensembles. We suggest that a close spatial location of astroglial GJs and asymmetrical chemical synapses is reflected in the functional organization of specific and nonspecific thalamic nuclei, which are the main centers of the afferent and efferent inputs of the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kotini M., Mayor R. 2015. Connexins in migration during development and cancer. Develop. Biology. 401, 143–151.

    Article  CAS  Google Scholar 

  2. Krutkovskikh V.A. 2005. The role of the gap-junctionmediated cell-to-cell interactions in cancerogenesis. Doct. Sci. (Med.) Dissertation, St.-Petersburg, Petrov Oncological Research Institute, 2005.

    Google Scholar 

  3. Tonkin R.S., Mao Y., O’Carroll S.J., Nicholson L.F., Green C.R., Gorrie C.A., Moalem-Taylor G. 2015. Gap junction proteins and their role in spinal cord injury. Front. Mol. Neurosci. 7 (102), doi 10.3389/ fnmol.2014.00102

  4. Evans W.H. 2015. Cell communication across gap junctions: A historical perspective and current developments. Biochem. Soc. Trans. 43 (3), 450–459.

    Article  CAS  PubMed  Google Scholar 

  5. **e H., Cui Y., Deng F., Feng J. 2015. Connexin: A potential novel target for protecting the central nervous system? Neural Regen. Res. 10 (4), 659–666.

    Google Scholar 

  6. Belousov A.B., Fontes J.D. 2013. Neuronal gap junctions: Making and breaking connections during development and injury. Trends Neurosci. 36 (4), 227–236.

    Article  CAS  PubMed  Google Scholar 

  7. Wu X.L., Tang Y.C., Lu Q.Y., **ao X.L., Song T.B., Tang F.R. 2015. Astrocytic Cx 43 and Cx 40 in the mouse hippocampus during and after pilocarpine induced status epilepticus. Exp. Brain Res. 233 (5), 1529–1539.

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto T., Ochalski A., Hertzberg E.L., Nagy J.I. 1990. On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. J. Comp. Neurol. 302 (4), 853–883.

    Article  CAS  PubMed  Google Scholar 

  9. Houades V., Rouach N., Ezan P., Kirchhoff F., Koulakoff A., Giaume C. 2006. Shapes of astrocyte networks in the juvenile brain. Neuron Glia Biol. 2 (1), 3–14.

    Article  PubMed  Google Scholar 

  10. Takeuchi H., Suzumura A. 2014. Gap junctions and hemichannels composed of connexins: Potential therapeutic targets for neurodegenerative diseases. Front. Cell. Neurosci. 8 (189). doi 10.3389/fncel.2014.0018

  11. Chever O., Pannasch U., Ezan P., Rouach N. 2014. Astroglial connexin 43 sustains glutamatergic synaptic efficacy. Phil. Trans. R. Soc. B. 369. doi 10.1098/rstb.2013.0596

  12. Blanc E.M., Bruce-Keller A.J., Mattson M.P. 1998. Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J. Neurochem. 70 (3), 958–970.

    Article  CAS  PubMed  Google Scholar 

  13. Eugenin E.A., Basilio D., Sáez J.C., Orellana J.A., Raine C.S., Bukauskas F., Bennett M.V., Berman J.W. 2012. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J. Neuroimmune Pharmacol. 7 (3), 499–518.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pannasch U., Rouach N. 2013. Emerging role for astroglial networks in information processing: From synapse to behavior. Trends Neurosci. 36, 405–417.

    Article  CAS  PubMed  Google Scholar 

  15. Griemsmann S., Hoft S.P., Bedner P., Zhang J., Staden E., Beinhauer A., Degen J., Dublin P., Cope D.W., Richter N., Crunelli V., Jabs R., Willecke K., Theis M., Seifert G., Kettenmann H., Steinhä user C. 2014). Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cerebral Cortex. doi 10.1093/cercor/bhu157

  16. Steriade M. 2006. Grou** of brain rhythms in corticothalamic systems. Neuroscience. 137 (4), 1087–1106.

    Article  CAS  PubMed  Google Scholar 

  17. Crunelli V., Hughes S.W. 2010. The slow (<1 Hz) rhythm of non-REM sleep: A dialogue between three cardinal oscillators. Nat. Neurosci. 13 (1), 9–17.

    Article  CAS  PubMed  Google Scholar 

  18. Bureau I., von Saint Paul F., Svoboda K. 2006. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PloS Biol. 4 (12). doi 10.1371/journalpbio.0040382

  19. Liao C.C., Chen R.F., Lai W.S., Lin R.C., Yen C.T. 2010. Distribution of large terminal inputs from the primary and secondary somatosensory cortices to the dorsal thalamus in the rodent. J. Comp. Neurol. 518 (13), 2592–2611.

    PubMed  Google Scholar 

  20. Lam Y.W., Sherman S.M. 2015. Functional topographic organization of the motor reticulothalamic pathway. J. Neurophysiol. 113 (9), 3090–3097.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paxinos G., Watson C. 1998. The rat brain in stereotaxic coordinates. 4th ed. San Diego: Acad. Press.

    Google Scholar 

  22. Bozzola J.J., Russell L.D. 1992). Quantitative electron microscopy. In: Electron microscopy: Principles and techniques for biologists. Boston: Jones and Bartlett Publ., p. 287–303.

  23. Genoud C., Houades V., Kraftsik R., Welker E., Giaume C. 2015. Proximity of excitatory synapses and astroglial gap junctions in layer IV of the mouse barrel cortex. Neuroscience. 291, 241–249.

    Article  CAS  PubMed  Google Scholar 

  24. Laird D.W. 2006. Life cycle of connexins in health and disease. Biochem. J. 394, 527–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Theis M., Giaume C. 2012. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res. 1487, 88–98.

    Article  CAS  PubMed  Google Scholar 

  26. Hoogland P.V., Wouterlood F.G., Welker E., Van der Loos H. 1991. Ultrastructure of giant and small thalamic terminals of cortical origin: A study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Exp. Brain Res. 87, 159–172.

    Article  CAS  PubMed  Google Scholar 

  27. Kirichenko E.Yu., Sukhov A.G., Logvinov A.K., Povilaitite P.E. 2013. Analysis of the spatial distribution of gap junctions relative to chemical synapses on serial ultrathin sections of the rat barrel cortex. Neurosci. Behav. Physiol. 43 (3), 336–340.

    Article  Google Scholar 

  28. Giaume C., Tabernero A., Medina J.M. 1997. Metabolic trafficking through astrocytic gap junctions. Glia. 21 (1), 114–123.

    Article  CAS  PubMed  Google Scholar 

  29. Pellerin L., Magistretti P.J. 2012. Sweet sixteen for ANLS. J. Cereb. Blood Flow Metab. 32 (7), 1152–1166.

    Article  CAS  PubMed  Google Scholar 

  30. Blomstrand F., Giaume C. 2006. Kinetics of endothelin- induced inhibition and glucose permeability of astrocyte gap junctions. J. Neurosci. Res. 83 (6), 996–1003.

    Article  CAS  PubMed  Google Scholar 

  31. Rouach N., Koulakoff A., Abudara V., Willecke K., Giaume C. 2008. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science. 322 (5907), 1551–1555.

    Article  CAS  PubMed  Google Scholar 

  32. Lam Y.W., Sherman S.M. 2015. Functional topographic organization of the motor reticulothalamic pathway. J. Neurophysiol. 113 (9), 3090–3097.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shigeri Y., Seal R. P., Shimamoto K. 2004. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res. Brain Res. Rev. 45, 250–265.

    Article  CAS  PubMed  Google Scholar 

  34. Tress O., Maglione M., May D., Pivneva T., Richter N., Seyfarth J., Binder S., Zlomuzica A., Seifert G., Theis M., Dere E., Kettenmann H., Willecke K. 2012. Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J. Neurosci. 32 (22), 7499–7518.

    Article  CAS  PubMed  Google Scholar 

  35. Nualart-Marti A., Solsona C., Fields R.D. 2012. Gap junction communication in myelinating glia. Biochim. Biophys. Acta. 1828 (2013), 69–78.

    PubMed  PubMed Central  Google Scholar 

  36. Dunn K.M., Nelson M.T. 2010. Potassium channels and neurovascular coupling. Circ. J. 74 (4), 608–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dere E., Zlomuzica A. 2012. The role of gap junctions in the brain in health and disease. Neurosci. Biobehav. Rev. 36, 206–217.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kirichenko.

Additional information

Original Russian Text © E.Yu. Kirichenko, G.A. Churyumova, A.K. Logvinov, 2016, published in Biologicheskie Membrany, 2016, Vol. 33, No. 3, pp. 194–206.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirichenko, E.Y., Churyumova, G.A. & Logvinov, A.K. Ultrastructural study of glial gap junctions in the thalamic nuclei of rat. Biochem. Moscow Suppl. Ser. A 10, 207–217 (2016). https://doi.org/10.1134/S1990747816020070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747816020070

Keywords

Navigation