Log in

Adipogenic Differentiation of Human Mesenchymal Stem Cells Derived from Fetal Bone Marrow Using Rosiglitazone

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

Protocols of adipogenic differentiation for mesenchymal stem cells (MSC) are mostly based on addition of various inducers, including rosiglitazone, a. specific agonist of PPARG facilitated the differentiation in this lineage. Rosiglitazone was not used for induction of adipogenic differentiation of fetal MSC from bone marrow (fMSC-BM). Here we described adipogenic differentiation induced by rosiglitazone in fMSC-BM (FetMSC). We found that the number of differentiated cells was 31.0 ± 1.9% (Oil Red O staining n = 1121). Expression of PPARG gene, a key adipogenic regulator, increased during differentiation. It is demonstrated that fMSC-BM generated adipocytes in the differentiation medium with rosiglitazone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abdallah, B.M., Al-Shammary, A., Skagen, P., Abu, Dawud, R., Adjaye, J., Aldahmash, A., and Kassem, M., CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells, Stem Cell Res., 2015, vol. 15, pp. 449–458.

    PubMed  CAS  Google Scholar 

  2. Baghbaderani, B.A., Behie, L.A., Sen, A., Mukhida, K., Hong, M., and Mendez, I., Expansion of human neural precursor cells in large-scale bioreactors for the treatment of neurodegenerative disorders, Biotechnol. Prog., 2008, vol. 24, pp. 859–870.

    PubMed  CAS  Google Scholar 

  3. Balbi, C. and Bollini, S., Fetal and perinatal stem cells in cardiac regeneration: moving forward to the paracrine era, Placenta, 2017, vol. 59, pp. 96–106.

    Article  PubMed  CAS  Google Scholar 

  4. Bazargan, M., Foster, D., Jr., Muhlhausler, B.S., Morrison, J.L., McMillen, C., and Davey, A.K., Limited fetal metabolism of rosiglitazone: elimination via the maternal compartment in the pregnant ewe, Reprod. Toxicol., 2016, vol. 61, pp. 162–168.

    Article  PubMed  CAS  Google Scholar 

  5. Bredella, A.M., Torriani, M., Ghomi, R.G., Thomas, B.J., Danielle, J.Brick, D.J., Gerweck, A.V., Rosen, C.J., Klibanski, A.A., and Karen, K.M., Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women, Obesity (Silver Spring), 2011, vol. 19, pp. 49–53.

    Article  PubMed  CAS  Google Scholar 

  6. Darlington, G.J., Ross, S.E., and MacDougald, O.A., The role of C/EBP genes in adipocyte differentiation, J. Biol. Chem., 1998, vol. 273, pp. 30057–30060.

    Article  PubMed  CAS  Google Scholar 

  7. Farmer, S.R., Transcriptional control of adipocyte formation, Cell Metab., 2006, vol. 4, pp. 263–273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Friedenstein, A.J., Osteogenic stem cells in bone marrow, in Bone and Mineral Research, Amsterdam: Elsevier, 1990, pp. 243–272.

    Google Scholar 

  9. Gorzelniak, K., Janke, J., Engeli, S., and Sharma, A.M., Validation of endogenous controls for gene expression studies in human adipocytes and preadipocytes, Horm. Metab. Res., 2001, vol. 33, pp. 625–627.

    Article  PubMed  CAS  Google Scholar 

  10. Guan, H.P., Ishizuka, T., Chui, P.C., Lehrke, M., and Lazar, M.A., Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes, Genes Dev., 2005, vol. 19, pp. 453–461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kalyoncu, N.I., Yaris, F., Ulku, C., Kadioglu, M., Kesim, M., Unsal, M., Dikici, M., and Yaris, E., A case of rosiglitazone exposure in the second trimester of pregnancy, Reprod. Toxicol., 2005, vol. 19, pp. 563–564.

    Article  PubMed  CAS  Google Scholar 

  12. Kawai, M., and Rosen, C.J., PPARg: a circadian transcription factor in adipogenesis and osteogenesis, Nat. Rev. Endocrinol., 2010, vol. 6, pp. 629–636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kawai, M., Sousa, K.M., MacDougald, O.A., and Rosen, C.J., The many facets of PPARgamma: novel insights for the skeleton, Am. J. Physiol. Endocrinol. Metab., 2010, vol. 299, pp. 299–318.

    Article  CAS  Google Scholar 

  14. Krylova, T.A., Koltsova, A.M., Zenin, V.V., Musorina, A.S., Yakovleva, T.K., and Poljanskaya, G.G., Comparative characteristics of new mesenchymal stem cell lines derived from human embryonic stem cells, bone marrow and foreskin, Tsitologiia, 2012, vol. 54, no. 1, pp. 5–16.

    PubMed  CAS  Google Scholar 

  15. Kubota, N., Terauchi, Y., Miki, H., Tamemoto, H., Yamauchi, T., and Komeda, K., PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance, Mol. Cell., 1999, vol. 4, pp. 597–609.

    Article  PubMed  CAS  Google Scholar 

  16. Landon, M.B. and Gabbe, S.G., Diabetes in pregnancy, in High Risk Pregnancy: Management Options, London: WB Saunders, 1999, pp. 665–684.

    Google Scholar 

  17. Liu, G.P., Liao, C.H., and Xu, Y.P., Proliferation and adipogenic differentiation of human adipose-derived stem cells isolated from middle-aged patients with prominent orbital fat in the lower eyelids, Plast. Aesthet. Res., 2016, vol. 3, pp. 322–327.

    Article  Google Scholar 

  18. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method, Methods, 2001, vol. 25, pp. 402–408.

    Article  PubMed  CAS  Google Scholar 

  19. Meuelman, N., Tondreau, T., Delforqe, A., Dejeneffe, M., Massy, M., Libertalis, M., Bron, D., and Laqneaux, L., Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium, Eur. J. Haematol., 2006, vol. 76, pp. 309–316.

    Article  Google Scholar 

  20. Ntambi, J.M. and Young-Cheul, K., Adipocyte differentiation and gene expression, J. Nutr., 2000, vol. 130, pp. 3122S–3126S.

    Article  PubMed  CAS  Google Scholar 

  21. O’Donoghue, K. and Fisk, N.M., Fetal stem cells, Best Pract. Res.Clin. Obstet. Gynaecol., 2004, vol. 18, pp. 853–875.

    Article  PubMed  Google Scholar 

  22. Olefsky, J.M., Treatment of insulin resistance with peroxisome proliferator–activated receptor γ agonists, J. Clin. Invest., 2000, vol. 106, pp. 467–472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., Multilineage potential of adult human mesenchymal stem cells, Science, 1999, vol. 284, pp. 143–147.

    Article  PubMed  CAS  Google Scholar 

  24. Polymeri, A., Giannobile, W.V., and Kaigler, D., Bone marrow stromal stem cells in tissue engineering and regenerative medicine, Horm. Metab. Res., 2016, vol. 48, pp. 700–713.

    Article  PubMed  CAS  Google Scholar 

  25. Post, S., Abdallah, B.M., Bentzon, J.F., and Kassem, M., Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells, Bone, 2008, vol. 43, pp. 32–39.

    Article  PubMed  CAS  Google Scholar 

  26. Revittser, A., Pivovarova, O., Rudovich, N., Pfeiffer, A.F.H., Shlyakto, E., and Dmitrieva, R., PPARg and natriuretic peptides (NP) pathway are alterated in adipose tissue from heart failure patients/ mesenchymal stromal cells (MMSC) as a tool to study cardiovascular metabolic disorders in vitro, Cardivasc. Res., 2014, vol. 103, p. s105.

    Article  Google Scholar 

  27. Rosen, E.D. and MacDougald, O.A., Adipocyte differentiation from the inside out, Nat. Rev. Mol. Cell Biol., 2006, vol. 7, pp. 885–896.

    Article  PubMed  CAS  Google Scholar 

  28. Rosen, E.D. and Spiegelman, B.M., Molecular regulation of adipogenesis, Ann. Rev. Cell Devel. Biol., 2000, vol. 16, pp. 145–171.

    Article  CAS  Google Scholar 

  29. Russo, G.T., Giandalia, A., Romeo, E.L., Nunziata, M., Muscianisi, M., Ruffo, M.C., Catalano, A., and Cucinotta, D., Fracture risk in type 2 diabetes, Curr. Persp., Gender Differ. Int. J. Endocrinol., 2016, pp. 1615–1735.

  30. Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I., and Spiegelman, B.M., mPPARgamma 2: tissue-specific regulator of an adipocyte enhancer, Genes Dev., 1994a, vol. 10, pp. 1224–1234.

    Article  Google Scholar 

  31. Tontonoz, P., Hu, E., and Spiegelman, B.M., Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor, Cell, 1994b, vol. 79, pp. 1147–1156.

    Article  PubMed  CAS  Google Scholar 

  32. Turner, P.A., Gurumurthy, B., Bailey, J.L., Elks, C.E., and Janorkar, A.V., Adipogenic differentiation of human adipose-derived stem cells grown as spheroids, Process. Biochem., 2017, vol. 59, pp. 312–320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang, L., Waltenberger, B., Pferschy-Wenzig, E.M., Blunder, M., Liu, X., Malainer, C., Blazevic, T., Schwaiger, S., Rollinger, J.M., Heiss, E.H., Schuster, D., Kopp, B., Bauer, R., Stuppner, H., Dirsch, V.M., and Atanasov, A.G., Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review, Biochem. Pharmacol., 2014, vol. 92, pp. 73–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Watanabe, M., Inukai, K., Katagiri, H., Awata, T., Oka, Y., and Katayama, S., Regulation of PPAR gamma transcriptional activity in 3T3-L1 adipocytes, Biochem. Biophys. Res. Commun., 2003, vol. 300, pp. 429–436.

    Article  PubMed  CAS  Google Scholar 

  35. Willson, T.M., Lambert, M.H., and Kliewer, S.A., Peroxisome proliferator–activated receptor γ and metabolic disease, Annu. Rev. Biochem., 2001, vol. 70, pp. 341–367.

    Article  PubMed  CAS  Google Scholar 

  36. Witt, R., MacKenzie, T.C., and Peranteau, W.H., Fetal stem cell and gene therapy, Semin. Fetal Neonatal Med., 2017, vol. 22, pp. 410–414.

    Article  PubMed  Google Scholar 

  37. Wongdee, K. and Charoenphandhu, N., Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms, World J. Diabetes, 2011, vol. 2, pp. 41–48.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yaris, F., Yaris, E., Kadioglu, M., Ulku, C., Kesim, M., and Kalyoncu, N.I., Normal pregnancy outcome following inadvertent exposure to rosiglitazone, gliclazide, and atorvastatin in a diabetic and hypertensive woman, Reprod. Toxicol., 2004, vol. 18, pp. 619–621.

    Article  PubMed  CAS  Google Scholar 

  39. Zebisch, K., Voigt, V., Wabitsch, M., and Brandsch, M., Protocol for effective differentiation of 3T3-L1 cells to adipocytes, Anal. Biochem., 2012, vol. 425, pp. 88–90.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.B. Semenova and I.O. Vasilieva (Institute of Cytology, Russian Academy of Sciences) for help in preparing the manuscript for publication.

This work was supported by the Russian Foundation for Basic Research, project no. 16-34-00952.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Revittser.

Additional information

Translated by I. Fridlyanskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revittser, A.V., Neguliaev, Y.A. Adipogenic Differentiation of Human Mesenchymal Stem Cells Derived from Fetal Bone Marrow Using Rosiglitazone. Cell Tiss. Biol. 12, 367–372 (2018). https://doi.org/10.1134/S1990519X18050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X18050061

Keywords:

Navigation