Log in

Globular Clusters: Absolute Proper Motions and Galactic Orbits

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1–2 mas yr−1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color–magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr−1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre’s bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Harris, VizieR On-Line Cat. VII/195 (2010).

    Google Scholar 

  2. D. I. Casetti-Dinescu, T. M. Girard, L. Jilkova, et al. Astron. J. 146, 33 (2013).

    Article  ADS  Google Scholar 

  3. D. I. Casetti-Dinescu, T. M. Girard, V. I. Korchagin, et al. Astron. J. 140, 1282 (2010).

    Article  ADS  Google Scholar 

  4. D. I. Casetti-Dinescu, T. M. Girard, D. Herrera, et al. Astron. J. 124, 195 (2007).

    Article  ADS  Google Scholar 

  5. A. K. Dambis, Astron. Astrophys. Trans. 25, 185 (2006).

    Article  ADS  Google Scholar 

  6. D. I. Dinescu, T. M. Girard, W. F. van Altena, et al., Astron. J. 125, 1373 (2003).

    Article  ADS  Google Scholar 

  7. D. I. Dinescu, T. M. Girard, W. F. van Altena, et al., Astron. J. 117, 1792 (1999).

    Article  ADS  Google Scholar 

  8. D. I. Dinescu, W. F. van Altena, T. M. Girard, et al., Astron. J. 117, 277 (1999).

    Article  ADS  Google Scholar 

  9. D. I. Dinescu, T. M. Girard, W. F. van Altena, et al. Astron. J. 114, 1014 (1997).

    Article  ADS  Google Scholar 

  10. M.-R. L. Cioni, K. Bekki, L. Girardi, et al. Astron. and Astrophys. 586, 77 (2016).

    Article  Google Scholar 

  11. S. Feltzing and R.A. Johnson, Astron. and Astrophys. 385, 67 (2002).

    Article  ADS  Google Scholar 

  12. T. K. Fritz and N. Kallivayalil, Astrophys. J. 811, 123 (2015).

    Article  ADS  Google Scholar 

  13. N. V. Kharchenko, A. E. Piskunov, S. Roeser, et al., Astron. and Astrophys. 558, 53 (2013).

    Article  Google Scholar 

  14. A. H. W. Küpper, E. Balbinot, A. Bonaca, et al., Astrophys. J. 803, 80 (2015).

    Article  ADS  Google Scholar 

  15. S. R. Majewski and K. M. Cudworth Publ. Astron. Soc. Pacific 105, 987 (1993).

    Article  ADS  Google Scholar 

  16. D. Massari, A. Bellini, F. R. Ferraro, et al., Astrophys. J. 779, 81 (2013).

    Article  ADS  Google Scholar 

  17. L. J. Rossi, S. Ortolani, B. Barbuy, et al., Monthly Notices Royal Astron. Soc. 450, 3270 (2015).

    Article  ADS  Google Scholar 

  18. J.-J. Wang, L. Chen, and D. Chen, Astron. and Astrophys., 29, 386 (2005).

    Google Scholar 

  19. L. L. Watkins and R. P. van der Marel, Astrophys. J. 839, 89 (2017).

    Article  ADS  Google Scholar 

  20. M. Zoccali, A. Renzini, S. Ortolani, et al. Astron. J. 121, 2638 (2001).

    Article  ADS  Google Scholar 

  21. N. Zacharias, C. Finch, and J. Flouard, Astron. J. 153, 166 (2017).

    Article  ADS  Google Scholar 

  22. D. Michalik, L. Lindegren, and D. Hobbs, Astron. and Astrophys. 574, 115 (2015).

    Article  ADS  Google Scholar 

  23. D. G. Monet, S. E. Levine, B. Canzian, et al., Astron. J. 125, 984 (2003).

    Article  ADS  Google Scholar 

  24. M. F. Skrutskie, R. M. Cutri, R. Stiening, et al., Astron. J. 131, 1163 (2006).

    Article  ADS  Google Scholar 

  25. N. Zacharias, C. Finch, J. Subasavage, et al., Astron. J. 150, 101 (2015).

    Article  ADS  Google Scholar 

  26. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  27. A. Mainzer, T. Grav, J. Bauer, et al., Astrophys. J. 743, 156 (2011).

    Article  ADS  Google Scholar 

  28. Gaia Collab., T. Prusti, J. H. J. de Bruijne, et al. Astron. and Astrophys. 595, 1 (2016).

    Google Scholar 

  29. A. D. Klinichev, E. V. Glushkova, A. K. Dambis, and L. N. Yalyalieva, Astronomy Reports, 2018 (in press).

    Google Scholar 

  30. M. B. Taylor, ASP Conf. Ser. 351, 666 (2006).

    ADS  Google Scholar 

  31. A. K. Dambis, Monthly Notices Royal Astron. Soc. 396, 553 (2009).

    Article  ADS  Google Scholar 

  32. R. de la Fuente Marcos, C. de la Fuente Marcos, C. MoniBidin, et al., Astron. and Astrophys. 581, A13 (2015).

    Article  Google Scholar 

  33. A. Koch, C. J. Hansen, and A. Kunder, Astron. and Astrophys. 604, A41 (2017).

    Article  ADS  Google Scholar 

  34. B. Dias, B. Barbuy, I. Saviane, et al., Astron. and Astrophys. 590, A9 (2016).

    Article  Google Scholar 

  35. M. Miyamoto and R. Nagai, PASJ, 27, no. 4, 533, (1975).

    ADS  Google Scholar 

  36. L. Hernquist, Astron. J., 356, 359, (1990).

    Article  ADS  Google Scholar 

  37. A. S. Rastorguev, N. D. Utkin, M. V. Zabolotskikh, et al. Astrophysical Bulletin 72, 122 (2017).

    Article  ADS  Google Scholar 

  38. G. de Vaucouleurs and K. C. Freeman, VistasAstron., 14, 163 (1972).

    ADS  Google Scholar 

  39. Ch. Allen, E. Moreno, B. Picardo, Astrophys. J. 652, 1150 (2006).

    Article  ADS  Google Scholar 

  40. Ch. Allen, E. Moreno, B. Picardo, Astrophys. J. 674, 237 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Glushkova, A. K. Dambis or A. S. Rastorguev.

Additional information

Published in Russian in Astrofizicheskii Byulleten’, 2018, Vol. 73, No. 2, pp. 168–183.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemel, A.A., Glushkova, E.V., Dambis, A.K. et al. Globular Clusters: Absolute Proper Motions and Galactic Orbits. Astrophys. Bull. 73, 162–177 (2018). https://doi.org/10.1134/S1990341318020049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341318020049

Key words

Navigation