Log in

The Age and Sources of Protoliths of Metasedimentary Rocks in the Eastern Tukuringra Terrane of the Mongol–Okhotsk Fold Belt: Results of U–Th–Pb, Lu–Hf, and Sm–Nd Isotope Studies

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

This article presents U–Th–Pb and Lu–Hf detrital zircon isotope data, as well as whole-rock Sm–Nd isotope data on metasedimentary rocks from the eastern part of the Tukuringra Terrane. Our analyses show that the zircons in metasedimentary rocks are mostly early Mesozoic. The Early Mesozoic, Early Paleozoic and Neoproterozoic zircons are predominant and Early Precambrian zircons are almost absent in these rocks. The age of the youngest zircon population places a lower age limit of sedimentation at 204 Ma for the Tungala Formation (Upper Triassic, Rhaetian), at 181 Ma for the Dugda Formation (Lower Jurassic, Toarcian), and at 189 Ma for the Tangomen Formation (Lower Jurassic, Pliensbachian). Practically all Mesozoic, Paleozoic, and Neoproterozoic zircons are characterized by Neo- and Mesoproterozoic Hf-model ages (tHf(DM)) = 1.41–0.46 Ga, tHf(C) = 1.55–0.49) and Mesoproterozoic Nd-model ages (tNd(DM) = 1.25–1.10 Ga, tNd(C) = 1.31–1.14). These results indicate that the sedimentary rocks were mainly sourced from the Amur continental superterrane, but not from the southern framing of the North Asian Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A.I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  2. Geological Map of the Amur Region and Adjacent Territories, Ed. by L.I. Krasnyo (VSEGEI, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  3. G. S. Gusev and V. E. Khain, “On relations of the Baikal–Vitim, Aldan-Stanovoy, and Mongol–Okhotsk terranes (southern Middle Siberia),” Geotektonika, No. 5, 68–82 (1995).

    Google Scholar 

  4. V. Yu. Zabrodin, V. A. Gur’yanov, S. G. Kislyakov, et al., State Geological Map of the Russian Federation. 1 : 1 000 000. Far East Series. Sheet N-53. Third Generation (VSEGEI, St. Petersburg, 2007) [in Russian].

  5. V. A. Zaika, A. A. Sorokin, B. Syu, A. B. Kotov, V. P. Kovach, “Geochemical features and sources of metasedimentary rocks of the western part of the Tukuringra Terrane of the Mongol–Okhotsk Fold Belt,” Stratigraphy. Geol. Correlation 26 (2), 157–178 (2018).

  6. V. A. Zaika, A. A. Sorokin, V. P. Kovach, A. P. Sorokin, A. B. Kotov, “Age and sources of Lower Mesozoic metasedimentary rocks of the Un’ya-Bom Terrane in the Mongol–Okhotsk Fold Belt: results of U–Pb geochronological (LA-ICP-MS) and Sm–Nd isotope studies,” Dokl. Earth Sci. 484 (2), 115–119 (2019).

  7. V. A. Zaika, A. A. Sorokin, and A. P. Sorokin, “Age and sources of metasedimentary rocks of the Tokur Terrane of the Mongol–Okhotsk Fold Belt: results of U–Pb and Lu–Hf isotope studies,” Dokl. Earth Sci. 486 (2), 593–598 (2019).

  8. V. A. Zaika and A. A. Sorokin, “Age and sources of Dzhagdy terrane metasedimentary rocks in the Mongol–Okhotsk Fold Belt: detrital zircon U–Pb and Lu–Hf isotopic data,” Russ. J. Pac. Geol. 14 (1), 20–31 (2020).

  9. V. A. Zaika, A. A. Sorokin, and A. P. Sorokin, “Age and sources of sedimentary rocks of the Lan terrane of the Mongol–Okhotsk fold belt: results of U-Pb and Lu-Hf isotope studies,” Russ. J. Pac. Geol. 14 (3), 193−205 (2020).

  10. V. F. Zubkov and A. S. Vol’skii, Geological Map of the BAM Region. 1 : 500 000. N-52-V,, Ed. by V.F. Zubkova (VSEGEI, Leningrad, 1984) [in Russian].

  11. V. F. Zubkov and M. T. Turbin, Geological Map of the BAM Region. 1 : 500 000. N-52-G,, Ed. by M.G. Zolotov (VSEGEI, Leningrad, 1984) [in Russian].

  12. G. L. Kirillova and M. T. Turbin, Formations and Tectonics of the Dzhagdy Chain of the Mongol–Okhotsk fold area (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  13. Yu. A. Mamontov, Geological Map of the USSR. 1 : 200 000. Amur–Zeya Series. Sheet N-52-KhKh, Ed. by L.I. Krasnyi (VSEGEI, Leningrad, 1968) [in Russian].

  14. V. V. Ol’kov, Geological Map of the USSR. 1 : 200 000. Amur–Zeya Series. Sheet N-52-XXIII (Mingeo, Moscow, 1972) [in Russian].

  15. L. M. Parfenov, L. I. Popeko, and O. Tomurtogoo, “Problems of Tectonics of the Mongol-Okhotsk Orogenic Belt,” Geol. Pacific Ocean. 16 (5), 797−830 (2001).

  16. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Badarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuz’min, U. Nokleberg, A. V. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, H. Jahn, “Model of formation of the orogenic belts of Central and Northeastern Asia,” Tikhookean. Geol. 22 (6), 7–41 (2003).

  17. N. N. Petruk, M. N. Shilova, S. A. Kozlov, and S. A. Novchenko, State geological Map of the Russian Federation. 1 : 1 000 000. 3 rd Generation. Sheet N-51. Skovorodino (M-51). Far East Series,, Ed. by A. S. Vol’skii (VSEGEI, St. Petersburg, 2009) [in Russian].

  18. A. N. Serezhnikov and Yu. R. Volkova, State Geological Map of the Russian Federation. 1 : 1 000 000. 3 rd Generation. Sheet N-52 (Zeya). Far East Series,, Ed. by A.S. Vol’skii (VSEGEI, St. Petersburg, 2007) [in Russian].

  19. A. A. Sorokin, “Paleozoic accretionary complexes of the eastern segment of the Mongol–Okhotsk fold belt,” Tikhookean. Geol. 20 (6), 31–36 (2001).

  20. A. A. Sorokin, A. B. Kotov, E. B. Sal’nikova, N. M. Kudryashov, V. P. and Kovach, “Early Paleozoic gabbro-granitoid associations in eastern segment of the Mongolian–Okhotsk Foldbelt (Amur River Basin): Age and Tectonic Position,” Stratigraphy. Geol. Correlation 15 (3), 241–257 (2007).

  21. A. A. Sorokin, A. A. Kolesnikov, A. B. Kotov, A. P. Sorokin, V. P. Kovach, “Sources of detrital zircons from terrigenous deposits in the Yankan Terrane of the Mongolian–Okhotsk Mobile Belt,” Dokl Earth Sci. 462 (5), 621–625 (2015).

  22. M. T. Turbin, Geological Map and Map of Mineral Resources of the USSR. 1 : 200 000. Amur–Zeya Series. Sheet N-52-XXII (Leningrad. kartfabrika, Leningrad, 1973) [in Russian].

  23. Y. Amelin and W. J. Davis, “Geochemical test for branching Decay of 176Lu,” Geochim. Cosmochim. Acta 69, 465–473 (2005).

  24. L. P. Black, S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff, J. W. Valley, R. Mundil, I. H. Campbell, R. J. Korsch, I. S. Williams, and C. Foudoulis, “Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards,” Chem. Geol. 205, 15–140 (2004).

  25. A. Bouvier, J. D. Vervoort, and J. Patchett, “The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets,” Earth Planet. Sci. Lett. 273 (1–2), 48–57 (2008).

  26. D. Bussien, N. Gombojav, W. Winkler, and A. Quadt, “The Mongol–Okhotsk Belt in Mongolia - an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons,” Tectonophysics 510, 132–150 (2011).

  27. G. E. Gehrels, V. Valencia, and J. Ruiz, “Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma-mass spectrometry,” Geochem., Geophys., Geosyst. 9 (3), 1–13 (2008).

  28. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematic of rivers water suspended material: implications for crustal evolution,” Earth Planet Sci. Lett 87, 249–265 (1988).

  29. W. L. Griffin, E. A. Belousova, S. R. Shee, N. J. Pearson, S. Y. O' Reilly, “Archean crustal evolution in the Northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons,” Precambrian Res. 131, 231–282 (2004).

  30. S. B. Jakobsen and G. J. Wasserburg, “Sm-Nd evolution of chondrites and achondrites,” Earth Planet Sci. Lett 67, 137–150 (1984).

  31. T. K. Kelty, A. Yin, B. Dash, G. E. Gehrelsf, and A. E. Ribeiro, “Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay–Hentey Basin, North-Central Mongolia: implications for the tectonic evolution of the Mongol–Okhotsk Ocean in Central Asia,” Tectonophysics 451, 290–311 (2008).

  32. A. I. Khanchuk, A. N. Didenko, L. I. Popeko, A. A. Sorokin, B. F. Shevchenko, “Structure and evolution of the Mongol-Okhotsk Orogenic Belt,” The Central Asian Orogenic Belt. Geology, Evolution, Tectonics, and Models, Ed. by A. Kroner (Borntraeger Sci. Publ., Stuttgart, 2015), 211–234.

    Google Scholar 

  33. K. R. Ludwig, “Isoplot 3.6,” Berkeley Geochronol. Center, Spec. Publ., No. 4, (2008).

  34. J. M. Mattinson, “Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed system natural zircon samples,” Chem. Geol. 275, 186–198 (2010).

  35. B. A. Natal’in, “History and modes of Mesozoic accretion in southeastern Russia,” The Island Arc 2, 15–34 (1993).

  36. W. J. Nokleberg, T. K. Bundtzen, R. A. Eremin, V. V. Ratkin, K. M. Dawson, V. I. Shpikerman, N. A. Goryachev, S. G. Byalobzhesky, Y. F. Frolov, A. I. Khanchuk, R. D. Koch, J. W. H. Monger, A. I. Pozdeev, I. S. Rozenblum, S. M. Rodionov, L. M. Parfenov, C. R. Scotese, and A. A. Sidorov, “Metallogenesis and Tectonics of the Russian Far East, Alaska, and the Canadian Cordillera,” U.S. Geol. Surv. Open File Report. No. 2003-434, (2005).

    Google Scholar 

  37. J. B. Paces and J. D. Miller, “Precise U-Pb ages of Duluth Complex and related mafic intrusions, Northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1. Ga Midcontinent Rift System,” J. Geophys. Res. Solid Earth 98 (8), 13997–14013 (1993).

  38. E. Scherer, C. Munker, and K. Mezger, “Calibration of the lutetium–hafnium clock,” Science, 293 (5530), 683–687 (2001).

  39. U. Soderlund, P. J. Patchett, J. D. Vervoort, and C. E. Isachsen, “The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions,” Earth Planet. Sci. Lett. 219, 311–324 (2004).

  40. J. D. Vervoort and P. J. Patchett, “Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites,” Geochim. Cosmochim. Acta 60, 3717–3723 (1996).

  41. G. J. Wasserburg, S. B. Jacobsen, D. J. De Paolo, et al., “Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions,” Geochim. Cosmochim. Acta 45, 2311–2323 (1981).

Download references

ACKNOWLEDGMENTS

We are grateful to E.N. Voropaev, O.G. Medvedeva (Institute of Geology and Nature management, Far Eastern Branch, Russian Academy of Sciences, Blagoveshchensk), V.P. Kovach (Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences, St. Petersburg), and staff of the LaserChron Center of the University of Arizona (United States) for performance of analytical studies.

Funding

Geological studies were carried out in the framework of the State Task of the Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences (project no. АААА-А16-116051810110-7). The Sm–Nd, U–Pb, and Lu–Hf isotope studies were supported by the Russian Foundation for Basic Research (project no. 18-05-00206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zaika.

Additional information

Recommended for publishing by L.I. Popeko

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaika, V.A., Sorokin, A.A. The Age and Sources of Protoliths of Metasedimentary Rocks in the Eastern Tukuringra Terrane of the Mongol–Okhotsk Fold Belt: Results of U–Th–Pb, Lu–Hf, and Sm–Nd Isotope Studies. Russ. J. of Pac. Geol. 15, 188–198 (2021). https://doi.org/10.1134/S181971402103009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181971402103009X

Keywords:

Navigation