Log in

Effects of Rotation and Curvature Ratio on Fluid Flow and Energy Distribution through a Rotating Curved Rectangular Channel

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

A spectral-based computational algorithm is presented, showing the effects of rotation and curvature on a fluid flow with natural and forced convective heat transfer (CHT) in a rotating curved rectangular channel with an aspect ratio of 3 and curvature ratio ranging from 0.001 to 0.5. The bottom wall of the channel is heated, with cooling from the ceiling; the vertical walls are thermally insulated. The system is rotated about the vertical axis in the positive and negative directions with the Taylor number \(-2500\le Tr \le 2500\) due to a constant pressure gradient force applied in the stream-wise direction. With the numerical computation presented, five branches of asymmetric steady solution curves comprising single-pair to 11-pair vortices are found. The change in the flow state is then evaluated by means of time-evolution computation, and sketching of the phase space of the solutions enables good prediction of the flow transition. It is found that in the case of co-rotation, a chaotic flow turns into a steady-state flow via a periodic or multi-periodic flow. In the counter-rotation case, however, irregular oscillations change directly to a multi-periodic flow. The study shows appearance of maximum 6-pair vortices at a small curvature, 11-pair vortices at a moderate curvature, and maximum 2-pair vortices at strong curvature. It is also observed that the number of secondary vortices reduces as Tr increases. The vortex structure of secondary flows is also shown in bar diagrams for easy visualization of the effect of curvature on the flow evolution. The study shows that the CHT is significantly enhanced by the secondary flow and a chaotic flow boosts the heat transfer more effectively than other physically realizable solutions. Finally, a comparison between the simulated and experimental results is performed and reasonable matching between the two solutions is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

REFERENCES

  1. Dean, W.R., Note on the Motion of Fluid in a Curved Pipe, Philos Mag., 1927, vol. 4, pp. 208–223.

    Article  MATH  Google Scholar 

  2. Ligrani, P.M. and Niver, R.D., Flow Visualization of Dean Vortices in a Curved Channel with 40 to 1 Aspect Ratio, Phys. Fluids, 1988, vol. 31, no. 12, p. 3605.

    Article  ADS  Google Scholar 

  3. Yamamoto, K., **aoyun, W., Kazuo, N., and Yasutaka, H., Visualization of Taylor-Dean Flow in a Curved Duct of Square Cross Section, Fluid Dyn. Res., 2006, vol. 38, pp. 1–18.

    Article  MATH  ADS  Google Scholar 

  4. Sugiyama, S., Hayashi, T., and Yamazaki, K., Flow Characteristics in the Curved Rectangular Channels (Visualization of Secondary Flow), Bull. JSME, 1983, vol. 26, no. 216, pp. 964–969.

    Article  ADS  Google Scholar 

  5. Bara, B.M., Nandakumar, K., and Masliyah, J.H., An Experimental and Numerical Study of the Dean Problem: Flow Development towards Two Dimensional Multiple Solutions, J. Fluid Mech., 1992, vol. 244, no. 1, p. 339.

    Article  ADS  Google Scholar 

  6. Wang, L. and Yang, T., Periodic Oscillation in Curved Duct Flows, Physica D, 2005, vol. 200, pp. 296–302.

    Article  ADS  Google Scholar 

  7. Wang, L.Q. and Yang, T.L., Multiplicity and Stability of Convection in Curved Ducts: Review and Progress, Adv. Heat Transfer, 2004, vol. 38, pp. 203–256.

    Article  Google Scholar 

  8. Li, Y., Wang, X., Yuan, S., and Tan, S.K., Flow Development in Curved Rectangular Ducts with Continuously Varying Curvature, Exp. Therm. Fluid Sci., 2016, vol. 75, pp. 1–15.

    Article  Google Scholar 

  9. Baylis, J.A., Experiments on Laminar Flow in Curved Channels of Square Section, J. Fluid Mech., 1971, vol. 48, no. 3, pp. 417–422.

    Article  ADS  Google Scholar 

  10. Humphrey, J.A.C., Taylor, A.M.K., and Whitelaw, J.H., Laminar Flow in a Square Duct of Strong Curvature, J. Fluid Mech., 1977, vol. 83, no. 3, pp. 509–527.

    Article  MATH  ADS  Google Scholar 

  11. Berger, S.A., Talbot, L., and Yao, L.S., Flow in Curved Pipes, Annual. Rev. Fluid. Mech., 1983, vol. 35, pp. 461–512.

    Article  MATH  ADS  Google Scholar 

  12. Nandakumar, K. and Masliyah, J.H., Swirling Flow and Heat Transfer in Coiled and Twisted Pipes, Adv. Transport Process., 1986, vol. 4, pp. 49–112.

    Google Scholar 

  13. Ito, H., Flow in Curved Pipes, JSME Int. J., 1987, vol. 30, pp. 543–552.

    Article  Google Scholar 

  14. Yanase, S., Kaga, Y., and Daikai, R., Laminar Flow through a Curved Rectangular Duct over a Wide Range of Aspect Ratio, Fluid Dyn. Res., 2002, vol. 31, pp. 151–83.

    Article  Google Scholar 

  15. Yanase, S., Mondal, R.N., and Kaga, Y., Numerical Study of Non-Isothermal Flow with Convective Heat Transfer in a Curved Rectangular Duct, Int. J. Therm. Sci., 2005, vol. 44, pp. 1047–1060.

    Article  Google Scholar 

  16. Mondal, R.N., Isothermal and Non-Isothermal Flows Through Curved Ducts with Square and Rectangular Cross Sections, Ph.D. Thesis, Department of Mechanical and Systems Engineering, Okayama University, Japan, 2006.

  17. Daskopoulos, P. and Lenhoff, A.M., Flow in Curved Ducts: Bifurcation Structure for Stationary Ducts, J. Fluid Mech., 1989, vol. 203, pp. 125–148.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Cheng, K.C., Lin, R.C., and Ou, J.W., Graetz Problem in Curved Square Channels, J. Heat Transfer, 1975, vol. 97, pp. 244–248.

    Article  Google Scholar 

  19. Shantini, W. and Nandakumar, K., Bifurcation Phenomena of Generalized Newtonian Fluids in Curved Rectangular Ducts, J. Non-Newtonian Fluid Mech., 1986, vol. 22, pp. 35–60.

    Article  MATH  Google Scholar 

  20. Finlay, W.H. and Nandakumar, K., Onset of Two-Dimensional Cellular Flow in Finite Curved Channels of Large Aspect Ratio, Phys. Fluids A: Fluid Dyn., 1990, vol. 2, no. 7, pp. 1163–1174.

    Article  ADS  Google Scholar 

  21. Thangam, S. and Hur, N., Laminar Secondary Flows in Curved Rectangular Ducts, J. Fluid Mech., 1990, vol. 217, pp. 421–440.

    Article  ADS  Google Scholar 

  22. Selmi, M., Namadakumar, K., and Finlay, W.H., A Bifurcation Study of Viscous Flow through a Rotating Curved Duct, J. Fluid Mech., 1994, vol. 262, pp. 353–375.

    Article  MATH  ADS  Google Scholar 

  23. Dennis, S.C.R. and Ng, M., Dual Solutions for Steady Laminar Flow through a Curved Tube, Q. J. Mech. Appl. Math., 1982, vol. 99, pp. 449–67.

    MATH  Google Scholar 

  24. Winters, K.H., A Bifurcation Study of Laminar Flow in a Curved Tube Rectangular Cross Section, J. Fluid Mech., 1987, vol. 180, pp. 343–369.

    Article  MATH  ADS  Google Scholar 

  25. Mondal, R.N., Kaga, Y., Hyakutake, T., and Yanase, S., Bifurcation Diagram for Two-Dimensional Steady Flow and Unsteady Solutions in a Curved Square Duct, Fluid Dyn. Res., 2007, vol. 39, pp. 413–446.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Hasan, M.S., Islam, M.M., Ray, S.C., and Mondal, R.N., Bifurcation Structure and Unsteady Solutions Through a Curved Square Duct with Bottom Wall Heating and Cooling from the Ceiling, AIP Conf. Procs., 2019, vol. 2121, p. 050003.

  27. Hasan, M.S., Mondal, R.N., and Lorenzini, G., Numerical Prediction of Non-Isothermal Flow with Convective Heat Transfer through a Rotating Curved Square Channel with Bottom Wall Heating and Cooling from the Ceiling, Int. J. Heat Technol., 2019, vol. 37, no. 3, pp. 710–726.

    Article  Google Scholar 

  28. Hasan, M.S., Mondal, R.N., Kouchi, T., and Yanase, S., Hydrodynamic Instability with Convective Heat Transfer through a Curved Channel with Strong Rotational Speed, AIP Conf. Procs., 2019, vol. 2121, p. 030006.

  29. Chandratilleke, T.T., Nadim, N., and Narayanaswamy, R., Vortex Structure-Based Analysis of Laminar Flow Behavior and Thermal Characteristics in Curved Ducts, Int. J. Therm. Sci., 2012, vol. 59, pp. 75–86.

    Article  Google Scholar 

  30. Watanabe, T. and Yanase, S., Bifurcation Study of Three-Dimensional Solutions of the Curved Square-Duct Flow, J. Phys. Soc. Japan, 2013, vol. 82, p. 0744321-9.

    Article  Google Scholar 

  31. Yanase, S., Mondal, R.N., Kaga, Y., and Yamamoto, K., Transition from Steady to Chaotic States of Isothermal and Non-Isothermal Flows through a Curved Rectangular Duct, J. Phys. Soc. Japan, 2005, vol. 74, no. 1, pp. 345–358.

    Article  MATH  ADS  Google Scholar 

  32. Wang, L.Q. and Yang, T.L., Multiplicity and Stability of Convection in Curved Ducts: Review and Progress, Adv. Heat Transfer, 2004, vol. 38, pp. 203–256.

    Article  Google Scholar 

  33. Yanase, S. and Nishiyama, K., On the Bifurcation of Laminar Flows through a Curved Rectangular Tube. J. Phys. Soc. Japan, 1988, vol. 57, pp. 3790–3795.

    Article  ADS  Google Scholar 

  34. Mondal, R.N., Watanabe, T., Hossain, M.A., and Yanase, S., Vortex-Structure and Unsteady Solutions with Convective Heat Transfer trough a Curved Duct, J. Thermophys. Heat Transfer, 2017, vol. 31, no. 1, pp. 243–254.

    Article  Google Scholar 

  35. Mondal, R.N., Uddin, M.S., and Yanase, S., Numerical Prediction of Non-Isothermal Flow through a Curved Square Duct, Int. J. Fluid Mech. Res., 2010, vol. 37, pp. 85–99.

    Article  Google Scholar 

  36. Mondal, R.N., Ray, S.C., and Yanase, S., Combined Effects of Centrifugal and Coriolis Instability of the Flow through a Rotating Curved Duct with Rectangular Cross Section, Open J. Fluid Dyn., 2015, vol. 4, no. 4, pp. 1–14.

    ADS  Google Scholar 

  37. Chandratilleke, T.T. and Nursubyakto, Numerical Prediction of Secondary Flow and Convective Heat Transfer in Externally Heated Curved Rectangular Ducts, Int. J. Therm. Sci., 2003, vol. 42, no. 2, pp. 187–198.

    Article  Google Scholar 

  38. Norouzi, M., Kayhani, M.H., Nobari, M.R.H., and Demneh, M.K., Convective Heat Transfer of Viscoelastic Flow in a Curved Duct, World Acad. Sci. Eng. Tech., 2009, vol. 32, pp. 327–333.

    Google Scholar 

  39. Yanase, S., Mondal, R.N., and Kaga, Y., Numerical Study of Non-Isothermal Flow with Convective Heat Transfer in a Curved Rectangular Duct, Int. J. Therm. Sci., 2005, vol. 44, pp. 1047–1060.

    Article  Google Scholar 

  40. Sohn, C.H. and Chang, J.W., Laminar Heat and Fluid Flow Characteristic with a Modified Temperature-Dependent Viscosity Model in a Rectangular Duct, J. Mech. Sci. Technol., 2006, vol. 20, no. 3, pp. 382–390.

    Article  Google Scholar 

  41. Mondal, R.N., Kaga, Y., Hyakutake, T., and Yanase, S., Effects of Curvature and Convective Heat Transfer in Curved Square Duct Flows, ASME Trans. J. Fluids Engin., 2006, vol. 128, no. 9, pp. 1013–1023.

    Article  Google Scholar 

  42. Mondal, R.N., Alam, M.M., and Yanase, S., Numerical Prediction of Non-Isothermal Flows through a Rotating Curved Duct with Square Cross Section, Thammasat Int. J. Sci. Technol., 2007, vol. 12, pp. 24–43.

    Google Scholar 

  43. Mondal, R.N., Islam, M.S., Uddin, M.K., and Hossain, M.A., Effects of Aspect Ratio on Unsteady Solutions through a Curved Duct Flow, Int. J. Appl. Math. Mech., 2013, vol. 34, no. 9, pp. 1–16.

    Google Scholar 

  44. Zhang, W., Wei, Y., Dou, H.S., and Zhu, Z., Transient Behaviors of Mixed Convection in a Square Enclosure with an Inner Impulsively Rotating Circular Cylinder, Int. Commun. Heat Mass Transfer, 2018, vol. 98, pp. 143–154.

    Article  Google Scholar 

  45. Hasan, M.S., Mondal, R.N., and Lorenzini, G., Centrifugal Instability with Convective Heat Transfer through a Tightly Coiled Square Duct, Math. Model. Engin. Problems, 2019, vol. 6, no. 3, pp. 397–408.

    Article  Google Scholar 

  46. Hasan, M.S., Mondal, R.N., and Lorenzini, G., Coriolis Force Effect in Steady and Unsteady Flow Characteristics with Convective Heat Transfer through a Curved Square Duct, Int. J. Mech. Engin., 2020, vol. 5, no. 1, pp. 1–40.

    Google Scholar 

  47. Hasan, M.S., Islam, M.S., Badsha, M.F., Mondal, R.N., and Lorenzini, G., Numerical Investigation on the Transition of Fluid Flow Characteristics Through a Rotating Curved Duct. Int. J. Appl. Mech. Engin., 2020, vol. 25, no. 3, pp. 45–63.

    Article  Google Scholar 

  48. Hasan, M.S., Mondal, R.N., and Lorenzini, G., Physics of Bifurcation of the Flow and Heat Transfer through a Curved Duct with Natural and Forced Convection, Chinese J. Phys., 2020, vol. 67, pp. 428–457.

    Article  MathSciNet  ADS  Google Scholar 

  49. Gottlieb, D. and Orazag, S.A., Numerical Analysis of Spectral Methods, Philadelphia, USA: Society for Industrial and Applied Mathematics, 1977,

  50. Razavi, S.E., Soltanipour, H., and Choupania, P., Second Law Analysis of Laminar Forced Convection in a Rotating Curved Duct, Therm. Sci., 2015, vol. 19, no. 1, pp. 95–107.

    Article  Google Scholar 

  51. Chandratilleke, T.T., Secondary Flow Characteristics and Convective Heat Transfer in a Curved Rectangular Duct with External Heating, 5th World Conf. on Experimental Heat Transfer (ExHFT-5), Thessaloniki, Greece, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, R.K., Hasan, M.S., Lorenzini, G. et al. Effects of Rotation and Curvature Ratio on Fluid Flow and Energy Distribution through a Rotating Curved Rectangular Channel. J. Engin. Thermophys. 30, 243–269 (2021). https://doi.org/10.1134/S1810232821020089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821020089

Navigation