Log in

Hybrid Photopolymer Material Based on (8-Acryloyl-1,4-dithia-8-azaspiro[4.5]decan-2-yl)methyl Acrylate and Thiol-Siloxane Component for Recording Microstructures: Synthesis and Optical and Thermomechanical Properties

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

A transparent hybrid photopolymer material is synthesized on the basis of (8-acryloyl-1,4-dithia-8-azaspiro[4.5]decan-2-yl)methyl acrylate and 3-[3-(3-mercaptopropyl)-1,1,3,5-tetramethoxy-5,5-diphenyltrisiloxane]propane-1-thiol. Using NMR spectroscopy and MALDI TOF mass spectrometry, the ability of the thiol-siloxane compound to undergo spontaneous hydrolytic condensation during storage is studied. The hybrid photopolymer films were obtained at different ratio of the components (from 16 : 1 to 1 : 2), and their thermomechanical and optical properties are investigated. The values of the storage modulus (0.9–2.3 GPa), the glass transition temperature (73–111°C), and the refractive index (1.56–1.59) are determined. On the basis of the 4 : 1 hybrid composition, a replica of relief microstructures with characteristic sizes of square elements of 5 × 0.8 μm is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Color images are available in the electronic version of the journal.

REFERENCES

  1. W. Hu, C. P. Chen, Y. Li, Z. He, X. Li, P. Zhou, J. Lu, and Y. Su, Opt. Express 23, 4727 (2015).

    Google Scholar 

  2. G. Liu, L. Zhou, G. Zhang, L. Chai, Y. Li, Q. Fan, and J. Shao, J. Mater. Sci. 51, 8953 (2016).

    Article  CAS  Google Scholar 

  3. S. Ali Khan, Z. Hao, H. Wei-Wei, and L.-Y. Hao, J. Mater. Sci. 52, 10927 (2017).

    Article  CAS  Google Scholar 

  4. Microoptics: From Technology to Applications, Ed. by K. H. Brenner and J. Jahns (Springer, Heidelberg, 2004).

    Google Scholar 

  5. N. G. Mironnikov, V. P. Korol’kov, D. I. Derevyanko, and V. V. Shelkovnikov, Avtometriya 53 (5), 1 (2017).

    Google Scholar 

  6. Polymers for Optical Fibers and Waveguides: An Overview, Ed. by J. P. Harmon and G. K. Noren (Oxford Univ. Press, Oxford, 2001); ACS Symp. Ser. 795.

    Google Scholar 

  7. R. Buestrich, F. Kahlenberg, M. Popall, A. Martin, and O. Rusch, Mater. Res. Soc. Symp. Proc. 628, 981 (2000).

    Article  Google Scholar 

  8. K. Yoon, B. Bae, and M. Popall, J. Nonlinear Opt. Phys. Mater. 14, 399 (2005).

    Article  CAS  Google Scholar 

  9. J. Zhang, L. Li, R. Guo, H. Zhou, Z. Li, G. Chen, Z. Zhou, and Q. Li, J. Mater. Sci. 54, 5989 (2019).

    Article  Google Scholar 

  10. S. Shibata, T. Yano, and H. Segawa, IEEE J. Sel. Top. Quantum Electron. 14, 1361 (2008).

    Article  CAS  Google Scholar 

  11. C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, and L. Nicole, C. R. Chim. 13, 3 (2010).

    Article  CAS  Google Scholar 

  12. D. I. Derevyanko, N. A. Orlova, V. V. Shelkovnikov, I. K. Shundrina, B. G. Goldenberg, and V. P. Korolkov, High Energy Chem. 53, 136 (2019).

    Article  CAS  Google Scholar 

  13. T. Baak, J. Opt. Soc. Am. 59, 851 (1969).

    Article  CAS  Google Scholar 

  14. T. A. Nedospasova, S. G. Kozhevatkin, M. V. Artamonova, and V. M. Molev, Glass Ceram. 52, 143 (1995).

    Article  Google Scholar 

  15. J.-Y. Bae, S. C. Yang, J. H. **, K. H. Jung, and J.‑S. Kim, J. Sol-Gel. Sci. Technol. 58, 114 (2011).

    Article  CAS  Google Scholar 

  16. S. Coste, A. Lecomte, P. Thomas, J. C. Champarnaud-Mesjard, T. Merle-Méjean, and R. Guinebretière, J. Non-Cryst. Solids 345, 634 (2004).

    Article  Google Scholar 

  17. G. Kickelbick, J. Sol-Gel Sci. Technol. 46, 281 (2008).

    Article  CAS  Google Scholar 

  18. J.-M. Ye, M. Muchchintala, and J.-Y. Do, Bull. Korean Chem. Soc. 33, 2494 (2012).

    Article  CAS  Google Scholar 

  19. V. S. Basistyi, A. D. Bukhtoyarova, E. V. Vasil’ev, and V. V. Shelkovnikov, Opt. Spectrosc. 125, 82 (2018).

    Article  CAS  Google Scholar 

  20. A. K. O’Brien, N. B. Cramer, and C. N. Bowman, J. Polym. Sci., Part A: Polym. Chem. 44, 2007 (2006).

    Article  Google Scholar 

  21. A. B. Lowe, Polym. Chem. 1, 17 (2010).

    Article  CAS  Google Scholar 

  22. V. V. Shelkovnikov, D. I. Derevyanko, L. V. Ektova, N. A. Orlova, V. A. Loskutov, E. V. Vasil’ev, and E. V. Karpova, Polym. Sci., Ser. B 58, 519 (2016).

    Article  CAS  Google Scholar 

  23. V. V. Shelkovnikov, L. V. Ektova, N. A. Orlova, L. N. Ogneva, D. I. Derevyanko, I. K. Shundrina, G. E. Salnikov, and L. V. Yanshole, J. Mater. Sci. 50, 7544 (2015).

    Article  CAS  Google Scholar 

  24. E. C. de Oliveira Nassor, L. Rodrigues Avila, P. F. dos Santos Pereira, K. J. Ciuffi, P. S. Calefi, and E. J. Nassa, Mater. Res. 14, 1 (2011).

    Article  Google Scholar 

  25. A. A. Anisimov, A. V. Zaitsev, V. A. Ol’shevskaya, M. I. Buzin, V. G. Vasil’ev, O. I. Shchegolikhina, and A. M. Muzafarov, INEOS OPEN 1, 71 (2018).

    Article  Google Scholar 

  26. V. A. Loskutov and V. V. Shelkovnikov, Russ. J. Org. Chem. 42, 1097 (2006).

    Article  CAS  Google Scholar 

  27. F. Devreux, J. P. Boilot, F. Chaput, and A. Lecomte, Mater. Res. Soc. Symp. Proc. 180, 211 (1990).

    Article  CAS  Google Scholar 

  28. M. Yoshikawa, H. Shibaa, M. Kanezashi, H. Wada, A. Shimojima, T. Tsuru, and K. Kuroda, RSC Adv. 7, 48683 (2017).

  29. C.-C. Chang, L.-P. Cheng, F.-H. Huang, C.-Y. Lin, C.-F. Hsieh, and W.-H. Wang, J.Sol-Gel Sci. Technol. 55, 199 (2010).

    Article  CAS  Google Scholar 

  30. Y. Lai, L. **, J. Hang, X. Sun, and L. Shi, J. Coat. Technol. Res. 12, 1185 (2015).

    Article  CAS  Google Scholar 

  31. T. Scherzer, Vib. Spectrosc. 29, 139 (2002).

    Article  CAS  Google Scholar 

  32. A. Salih, M. B. Ahmad, A. I. Nor, K. Dahlan, R. Tajau, M. H. Mahmood, and W. Yunus, Molecules 20, 14191 (2015).

    Article  CAS  Google Scholar 

  33. K. Studer, C. Decker, E. Beck, and R. Schwalm, Prog. Org. Coat. 48, 92 (2003).

    Article  CAS  Google Scholar 

  34. A. B. Lowe, Polym. Chem. 1, 17 (2010).

    Article  CAS  Google Scholar 

  35. M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. S. Ochtig, H. Thiele, and S. Westenhofer, Opt. Lasers Eng. 43, 373 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Multi-Access Chemical Research Center, Siberian Branch, Russian Academy of Sciences, for performing spectral and analytical measurements. The profilometry of the samples was carried out on the equipment of the Shared Research Center High-Resolution Spectroscopy of Gases and Condensed Matter at the Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 18-73-00226); mass spectrometric analysis was supported by the Russian state budget project for the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences (AAAA-A17-117020210025-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Derevyanko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derevyanko, D.I., Basistyi, V.S., Shelkovnikov, V.V. et al. Hybrid Photopolymer Material Based on (8-Acryloyl-1,4-dithia-8-azaspiro[4.5]decan-2-yl)methyl Acrylate and Thiol-Siloxane Component for Recording Microstructures: Synthesis and Optical and Thermomechanical Properties. Polym. Sci. Ser. B 62, 509–521 (2020). https://doi.org/10.1134/S1560090420050048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420050048

Navigation