Log in

Polyaniline-Ag Nanocomposite Containing Silane Ligand: Synthesis, Characterization and Electroactivity Behavior

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In this work, polyaniline-Ag nanocomposite containing modified silane ligand was synthesized via the reduction of AgNO3 with hydrazine on the surface of the emeraldine-base polyaniline containing modified silane ligand. The latter was prepared through chemical polymerization of aniline in the presence of thiol-terminated silane ligand by ammonium peroxydisulfate as an oxidant reagent under ultrasonic waves. Then it was used as a template in the synthesis of Ag NPs. Resultant nanocomposite displayed high dispersity in polar organic solvents and aquous media. Nanocomposite was characterized by UV–Vis and FTIR spectroscopy, X-ray diffraction studies, scanning electron microscopy, energy dispersive analysis of W-ray and transmission electron microscopy. The results confirmed the presence of Ag NPs in nanocomposite and also the successful convertion of emeraldine-salt to emeraldine-base polyaniline. Finally, the electroactivity behavior of initial polymer and resultant nanocomposite was investigated by cyclic voltammetry method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. Massoumi, S. Fathalipour, A. Massoudi, M. Hassanzadeh, and A. A. Entezami, J. Appl. Polym. Sci. 130, 2780 (2013).

    Article  CAS  Google Scholar 

  2. M. R. Karim, K. T. Lim, C. J. Lee, M. T. I. Bhuiyan, H. J. Kim, L. S. Park, and M. S. Lee, J. Polym. Sci., Part A: Polym. Chem. 45, 5741 (2007).

    Article  CAS  Google Scholar 

  3. J. Wang and D. Zhang, Adv. Polym. Technol. 32, E323 (2013).

    Article  CAS  Google Scholar 

  4. G. M. do Nascimento, P. Y. Kobata, R. P. Millen, and M. L. Temperini, Synth. Met. 157, 247 (2007).

    Article  CAS  Google Scholar 

  5. E. Sanches, J. Soares, R. Iost, V. Marangoni, G. Trovati, T. Batista, A. Mafud, V. Zucolotto, and Y. P. Mascarenhas, J. Nanomater. 2011, 73 (2011).

    Article  Google Scholar 

  6. B. Massoumi and S. Fathalipour, Polym. Sci., Ser. A 56, 373 (2014).

    Article  CAS  Google Scholar 

  7. S. Fathalipour and B. Massoumi, J. Appl. Polym. Sci. 132, 42366 (2015).

    Article  Google Scholar 

  8. O. M. Folarin, E. R. Sadiku, and A.Maity, J. Phys. Sci. 6, 4869 (2011).

    Google Scholar 

  9. B. Rozenberg and R. Tenne, Prog. Polym. Sci. 33, 40 (2008).

    Article  CAS  Google Scholar 

  10. P. Khanna, N. Singh, S. Charan, and A. K. Viswanath, Mater. Chem. Phys. 92, 214 (2005).

    Article  CAS  Google Scholar 

  11. H.-L. Wang, W. Li, Q. Jia, and E. Akhadov, Chem. Mater. 19, 520 (2007).

    Article  Google Scholar 

  12. I. Y. Sapurina and J. Stejskal, Russ. J. Gen. Chem. 82, 256 (2012).

    Article  CAS  Google Scholar 

  13. M. Ghorbani, M. S. Lashkenari, and H. Eisazadeh, High Perform. Polym. 23, 513 (2011).

    Article  CAS  Google Scholar 

  14. S. Fathalipour and M. Mardi, Mater. Sci. Eng., C 79, 55 (2017).

    Article  CAS  Google Scholar 

  15. H. D. Tran, J. M. D’Arcy, Y. Wang, P. J. Beltramo, V. A. Strong, and R. B. Kaner, J. Mater. Chem. 21, 3534 (2011).

    Article  CAS  Google Scholar 

  16. O. Y. Posudievsky, O. Goncharuk, R. Barille, and V. Pokhodenko, Synth. Met. 160, 462 (2010).

    Article  CAS  Google Scholar 

  17. M. M. Ayad, N. Prastomo, A. Matsuda, and J. Stejskal, Synth. Met. 160, 42 (2010).

    Article  CAS  Google Scholar 

  18. E. N. Konyushenko, S. Reynaud, V. Pellerin, M. Trchová, J. Stejskal, and I. Sapurina, Polymer 52, 1900 (2011).

    Article  CAS  Google Scholar 

  19. P. Buffat, Mater. Chem. Phys. 81, 368 (2003).

    Article  CAS  Google Scholar 

  20. A. B. Afzal, M. Akhtar, M. Nadeem, M. Ahmad, M. Hassan, T. Yasin, and M. Mehmood, J. Phys. D: Appl. Phys. 42, 015411 (2008).

    Article  Google Scholar 

  21. S. Bouazza, V. Alonzo, and D. Hauchard, Synth. Met. 159, 1612 (2009).

    Article  CAS  Google Scholar 

  22. S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, and M. F. Bertino, Chem. Mater. 17, 5941 (2005).

    Article  CAS  Google Scholar 

  23. Z. Mbhele, M. Salemane, C. Van Sittert, J. Nedeljković, V. Djoković, and A. Luyt, Chem. Mater. 15, 5019 (2003).

    Article  CAS  Google Scholar 

  24. E. Genies, M. Lapkowski, and J. Penneau, J. Electroanalyt. Chem. Interfacial Electrochem. 249, 97 (1988).

    Article  CAS  Google Scholar 

  25. Y. Gao, D. Shan, F. Cao, J. Gong, X. Li, H.-Y. Ma, Z.‑M. Su, and L.-Y. Qu, J. Phys. Chem. C 113, 15175 (2009).

    Article  CAS  Google Scholar 

  26. M. M. Oliveira, E. G. Castro, C. D. Canestraro, D. Zanchet, D. Ugarte, L. S. Roman, and A. J. Zarbin, J. Phys. Chem. B 110, 17063 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soghra Fathalipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soghra Fathalipour, Said Ahunbar Polyaniline-Ag Nanocomposite Containing Silane Ligand: Synthesis, Characterization and Electroactivity Behavior. Polym. Sci. Ser. B 61, 663–669 (2019). https://doi.org/10.1134/S1560090419050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419050038

Navigation